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The pinch-off of an axisymmetric air bubble surrounded by an inviscid fluid is compared in four physical
realizations: !i" cavity collapse in the wake of an impacting disk, !ii" gas bubbles injected through a small
orifice, !iii" bubble rupture in a straining flow, and !iv" a bubble with an initially necked shape. Our boundary-
integral simulations suggest that all systems eventually follow the universal behavior characterized by slowly
varying exponents predicted by J. Eggers et al. #Phys. Rev. Lett. 98, 094502 !2007"$. However, the time scale
for the onset of this final regime is found to vary by orders of magnitude depending on the system in question.
While for the impacting disk it is well in the millisecond range, for the gas injection needle universal behavior
sets in only a few microseconds before pinch-off. These findings reconcile the different views expressed in
recent literature about the universal nature of bubble pinch-off.
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The precise nature of axisymmetric bubble collapse in a
low-viscosity fluid has been a subject of controversy over the
last years. Such a collapse may be initiated by a variety of
different forces !e.g., surface tension, hydrostatic pressure,
and external flows". In a later stage, however, it is only the
requirement of mass conservation that forces the liquid to
accelerate more and more as the shrinking bubble neck
closes in on the axis of symmetry. This purely inertial nature
of the final collapse motivated the first hypotheses about the
universality of the final collapse regime #1,2$. A simple
power law was predicted with the neck radius scaling as the
square root of the time remaining until the pinch-off singu-
larity. Neither numerically nor experimentally could this be-
havior be confirmed. Instead, for different systems and initial
conditions a variety of scaling exponents all slightly above
1/2 have been obtained #3–10$ leading to doubts about the
universal nature of bubble collapse.

Recently, the idea of universality has been revived in
#11,12$ which suggested an intricate coupling between the
radial and the axial length scales. The authors of #12$ explic-
itly predict the existence of a final universal regime which
however is no longer a simple power law, but characterized
by a local exponent that slowly varies in time. The value of
1/2 is recovered in the asymptotic limit infinitesimally close
to pinch-off. According to this theory the variety of observed
exponents corresponds to different time averages of this local
exponent. Note that this is different from the universality as
observed, for example, in the pinch-off of a drop #13$ where
the behavior of the neck radius can be described by a scaling
law whose universal exponent remains constant in time. With
the exception of the rather idealized system used in #12$, this
universality has thus far never been directly observed in nei-
ther experiments nor simulations.

In the present work we aim to reconcile the different
views about universality in axisymmetric bubble pinch-off
expressed over the last years. The key aspect is that we ex-
amine in detail how and when different physical realizations
of bubble pinch-off reach the universal regime. We present
detailed numerical simulations which are able to follow the
neck evolution over more than 12 decades in time even for
complex realistic systems. With these we demonstrate that all

systems that have recently been studied in the context of
bubble pinch-off eventually follow the same universal be-
havior predicted in #12$. The time scale on which universal-
ity is reached, however, varies enormously: for an impacting
disk #4,14$ universality can be observed during several mil-
liseconds prior to pinch-off and thus on a time scale, which is
experimentally accessible. However, for gas bubbles injected
through a small needle #1,2,5–10,15–17$, universality sets in
only a few microseconds !or even less, depending on the
precise initial conditions" before pinch-off. This may well be
the reason why universality has thus far never been observed
even in very precise gas injection experiments and why non-
inertial effects such as surface tension have been claimed to
play a dominant role in this geometry #9,10$. By specifying
the onset times of universality, our work thus provides a
solid basis to which onset times of nonuniversal disturbance
effects such as viscosity, air flow, or nonaxisymmetry can be
compared in order to assess whether or not a given system
would in reality exhibit such a universal behavior.

Four different physical systems have been reported in the
literature on bubble pinch-off, numerically and experimen-
tally, and will be compared in this work:

!i" Impacting disk. The bubble is created by the impact of
a circular disk on a liquid surface #4,14$ as shown in Fig.
1!i". Upon impact an axisymmetric air cavity forms and
eventually pinches off halfway down the cavity under the
influence of hydrostatic pressure. Immediately after pinch-
off, the ejection of a violent jet can be observed whose for-
mation however is not caused by the singularity alone #18$ as
one might expect. Since surface tension is negligible
#4,14,18$ the only relevant control parameter is the Froude
number Fr=V0

2 /gR0 with the impact velocity V0, gravity g,
and the disk radius R0. In the data reported here the disk
radius varies between 1 and 3 cm and the impact velocity
ranges from 1 to 20 m/s.

!ii" Gas injection through an orifice. A small needle sticks
through the bottom of a quiescent liquid pool
#1,2,5–10,15–17$ as illustrated in Fig. 1!ii". A pressure reser-
voir connected to the needle slowly pushes a gas bubble out
of the needle’s orifice. The bubble then rises under the influ-
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ence of buoyancy. When the air thread between the orifice
and the main bubble becomes long enough, surface tension
causes the thinning of the neck, which eventually leads to the
pinch-off of the bubble. We present data for three sample
configurations A, B, and C corresponding to Figs. 4, 10, and
6 of #2$, respectively, and characterized by Weber numbers
WeA,B,C=0.007, 36 and 173, respectively. #Here, We
=!Q2 / !"2a3#" with water density !, gas flow rate Q, needle
radius a, and surface tension #$.

!iii" Bubble in a straining flow. The initially spherical
bubble collapses due to a surrounding hyperbolic straining
flow #3,11,19,20$ #see Fig. 1!iii"$.

!iv" Initially necked bubble. Surface tension causes the
pinch-off of a bubble starting off with an initially already
pronounced neck #12$ as illustrated in Fig. 1!iv".

In all systems we consider the idealized inviscid axisym-
metric bubble pinch-off neglecting the influence of the inner
gas dynamics #3,8–10,20–23$, viscosity #6,9,10,15$, and
nonaxisymmetric perturbations #16,17$. For our numerical
investigations we employ an axisymmetric boundary-integral
!BI" code similar to the one described in #14$ which has
shown a very good agreement with experiments of system !i"
for various impact geometries #4,14,24$. The validity of our
implementation for the other systems is verified by compari-
son with the bubble shapes from various earlier works
#2,12,19$. Some details about the simulation parameters are
given in the EPAPS document #25$.

In a first approach to an analytical description of bubble
collapse, the bubble shape can be approximated as an infi-
nitely long cylinder !neglecting axial velocities" which yields
a two-dimensional version of the well-known Rayleigh equa-
tion #2–4,11,15$ for the neck radius r0

d!r0ṙ0"
dt

ln
r0

R$

+
1
2

ṙ0
2 =

F

!
. !1"

Here, ! is the liquid density, F represents the pressure force
initiating the collapse, and overdots denote the derivative
with respect to time t. R$ is a cutoff radius required to satu-
rate the pressure at large distances. Assuming a constant R$

leads to the neck radius r0 shrinking as a power law !possibly
with logarithmic corrections #3,4,11$" with exponent 1/2 as a
function of the time to pinch-off %= tc− t, where tc is the
closure time. At first sight, this expectation seems to be very
well confirmed for all four systems by the lines in Fig. 2
which to the naked eye appear perfectly straight over more
than 12 decades. The slope which corresponds to the scaling
exponent is slightly larger than 1/2, in agreement with pre-
vious experiments and simulations which have reported ex-
ponents between 0.5 and 0.6 #3–6,8–11,15$.

A more detailed look at the local exponent, defined as the
slope in Fig. 2, &!%"=! ln r0 /! ln %, reveals that the behavior
of the neck radius cannot be described by a simple power
law. The local exponent & varies during the approach to
pinch-off #12$. In fact, the relevant equation for the time
dependence of & in #12$ can be derived directly from Eq. !1"
by letting R$=2%r0rc. Here, rc is the local axial radius of
curvature !see Fig. 3". The combination %r0rc is the scale by
which the axial coordinate has to be rescaled in order to
collapse neck profiles at different times when rescaling radial
coordinates by r0 #4,6,26$. This leads to the aspect ratio of
the cavity naturally being defined as '=r0 /%r0rc. With the
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FIG. 1. !Color online" Illustration of the bubble collapse in the
four different systems: !i" impacting disk, !ii" gas injection through
a needle orifice, !iii" bubble in a straining flow, and !iv" initially
necked bubble. Solid blue lines correspond to the free surface at
pinch-off, while dashed and dotted black lines represent earlier
bubble shapes. The disk and the needle are depicted in red !light
gray".
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FIG. 2. !Color online" “Classical” plot of the neck radius versus
the time to pinch-off !a" for system !i" with Fr=5.1 !R0=2 cm,
V0=1 m /s", !b" for system !ii" in setup A, and !c" for systems !iii"
and !iv" shown in dark gray !lower line" and magenta !upper line",
respectively. The dashed line represents a slope of 1/2.
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above substitutions and working in the limit of vanishing F,
i.e., in the regime where the influence of the driving force
has become subdominant, we obtain from Eq. !1"

&−
d&

d ln %
+ & − 2&2'ln& 4

'2' = − &2, !2"

which is exactly identical to Eq. !4" in #12$ !being (1=8 #27$
and a0!=2'2 in the original notation". Equation !2" with the
d& /d ln % term neglected due to the slow variation in & #28$
represents the universal regime where the only driving is
provided by inertia and all external forces have become neg-
ligible. We will now proceed to compare the approach of the
different systems !i"–!iv" to this universal curve. Equation
!2" with the above approximation suggests to represent & not
as a function of time to pinch-off %, but instead as a function
of the aspect ratio '. Since there is a one-to-one correspon-
dence between % and ' shown in Fig. 4, we can use the
aspect ratio ' as a universal “clock” replacing the time to
pinch-off % #27$. Note that '→0 as %→0, meaning that the
cavity becomes more and more slender #6,11$. Another mo-
tivation to use ' instead of % is that Eq. !2" is invariant under
a rescaling of time %→)% reflecting an arbitrariness of the
time coordinate in this problem. The aspect ratio ' does not
possess this arbitrariness.

One of the key points to address is if and how this behav-
ior can be observed experimentally. Besides the obvious dif-
ficulty of obtaining a sufficient number of decades to observe
the slow variation in the local exponent, the crucial question
is at what time !before pinch-off" does the system exhibit a
universal behavior? This is crucial because, first, the duration
of the universal regime needs to be within the time resolution
of the experimental equipment. And second, the onset of

universality needs to happen before other effects such as air
flow, viscosity, nonaxisymmetric instabilities, etc. unavoid-
ably destroy the purely inertial regime. We will now provide
those time scales for the various systems based on numerical
BI simulations which do not have these limitations.

We start by considering the impacting disk system !i" in
Fig. 5!a". It is evident that the data for all values of the
control parameter follow—after some initial transient—the
same universal curve in excellent agreement with Eq. !2".
Our data thus confirm the existence of a universal regime as
predicted in #12$. Since from Fig. 5 the closure time cannot
be determined in a straightforward manner, the closure time
has been estimated by fitting straight lines in plots like in
Fig. 2. As this procedure is not exact due to the time depen-
dence of the local scaling exponent, it leads to a deviation of
the numerical data from the universal curve in Fig. 5 toward
the very end which however is merely an artifact of the un-
certainty in the exact closure time.

Figure 5!a" further gives us a good measure at what aspect
ratio the universal regime is attained: approximately after
passing their respective local maxima, all curves follow the
same behavior. The aspect ratio of this maximum can then
easily be related to the physical time before pinch-off %u
using Fig. 4. We find %u(6 ms and %u(1 ms for Fr=3.4
and Fr=4000, respectively. That the high Froude case
reaches universality later can be intuitively understood: at
high Froude the cavity closes deeper and therefore the hy-
drostatic driving pressure is larger and its effects on the neck

0r cr

FIG. 3. !Color online" Illustration of the cavity surface, the
minimal neck radius r0, and the local radius of curvature rc.
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FIG. 4. !Color online" The aspect ratio ' plotted as a function of
the time to pinch-off % for system !i" with Fr=5.1 !blue lower line"
as well as system !ii" in setup A !red upper line". This shows that
one can use ' instead of % as a measure for the approach to
pinch-off.
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FIG. 5. !Color online" !a" The local exponent & as a function of
the aspect ratio ' for system !i" with Fr=3.4 !cyan, rightmost
curve", Fr=5.1 !blue curve", Fr=46 !brown curve", Fr=500 !green
curve", and Fr=4000 !black, leftmost curve". After an initial tran-
sient all curves follow the same universal regime. The dashed line is
Eq. !2". The local maxima correspond roughly to the start of the
universal regime. !b" The local exponent for system !ii" in the three
configurations: A !red, dark gray curve", B !gray curve", and C
!yellow, very light gray curve". All curves A–C lie practically on
top of each other. !c" The local exponent for system !iii" in dark
gray !upper curve" and system !iv" in magenta !light gray, lower
curve" follows the same universal behavior close to pinch-off.
Small jumps in the data are due to the crossover between different
node positioning algorithms employed in the initial and the final
stages of the simulation !see EPAPS document #25$", while the
deviation of the numerical data away from the universal curve at the
very end stems from the uncertainty in determining the exact time
of closure.
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dynamics can be felt longer. It is remarkable nevertheless
that the duration of the universal regime changes only by a
factor of less than 10, while the corresponding control pa-
rameter varies over three orders of magnitude. At the same
time both values are easily within experimentally accessible
time scales.

We now compare this to system !ii", the bubble injection
through a small needle in Fig. 5!b". While also this system
clearly exhibits universal behavior, the approach to the uni-
versal regime is much less abrupt than in system !i". Due to
this more gradual approach, it is difficult to specify precisely
the time when universality is reached for the gas injection
needle. We thus choose to keep our previous definition of %u
being the time corresponding to the local maximum in Fig.
5!b". This gives a good upper bound for the time when uni-
versality sets in. Surprisingly, we find even these times to be
on the order of 5 *s in case A, 60 ns in case C, and as low
as 10 ns in case B, respectively #29$. Thus, the duration of
the universal regime in the needle setup is dramatically !by
at least three orders of magnitude" shorter than for the im-
pacting disk. This may well explain why, besides possible
disturbing effects !viscosity, gas flow, and nonaxisymmetry",
an observation of the universal regime has thus far never
been reported in the literature on this widely used system.

Figure 5!c" confirms that also systems !iii" and !iv" follow
the universal regime. System !iii" does so even over the en-
tire plotted range. Both are somewhat idealized systems for
which we are not aware of any experimental investigations
regarding the approach to pinch-off. Without relevant length
and time scales, it is impossible to specify the physical time
to universality in these cases.

The different behaviors of the individual systems can in-
tuitively be understood as follows. System !iii" contains no
external driving force other than liquid inertia, which makes
it the ideal system to compare with Eq. !2". Indeed, this
entirely inertial system follows the universal regime over the
widest range in aspect ratios of all systems studied. Simi-
larly, due to the relatively large dimensions of the collapsing
cavity in system !i", a correspondingly large amount of iner-
tia is introduced into the system which consequently follows
the universal regime also for a rather long time. On the other
hand, the two systems where pinch-off is initiated by surface
tension, systems !ii" and !iv", contain little inertia and thus
approach the universal regime only relatively late and in a
similar fashion.

To make the above arguments more quantitative, we real-
ize that the universal regime sets in when the inertial driving
of the collapse becomes dominant over the external driving
force. This can be expressed by a local balance between
inertia and the respective driving force. For system !i" the
driving force is the hydrostatic pressure and the relevant pa-
rameter is thus the local Froude number Frlocal= ṙ0

2 / !gzc" with
gravity g and zc as the depth below the surface where the
cavity eventually closes. For system !ii" the local Weber
number Welocal=!ṙ0

2r0 /# !with density ! and surface tension
# of water" gives the balance between inertia and surface
tension as the relevant driving force. The duration of the
universal regime can then be estimated as the time before
pinch-off when these local quantities become of order unity.
Figure 6 shows the local Froude and Weber numbers as func-

tions of time to pinch-off % for a number of representative
cases of systems !i" and !ii", respectively. One can clearly
appreciate that Welocal for the needle system becomes unity
later than Frlocal for the impacting disk. This explains the
large discrepancy in %u for the two systems.

At the same time the distance between the two disk im-
pacts with Fr=3.4 and Fr=4000 is smaller than that between
the two needle setups A and B. Accordingly, the duration of
the universal regime varies only between )1 and )6 ms for
the disk, while in the needle setup it depends much stronger
on initial conditions varying from microseconds down to
several nanoseconds as seen above.

We will now explain the Froude dependence of the ex-
perimentally and numerically observed exponents in #4$ for
the impacting disk. Based on Fig. 5!a" these exponents can
be viewed as a time average of the local exponent. Due to the
limited resolution and the onset of other effects !e.g., air
flow" only the right part of these plots is accessible in ex-
periments and the time average will be heavily weighted
toward the beginning of the universal regime, i.e., to a region
just around and left of the maximum in Fig. 5!a". We can
thus assume the experimentally observed effective exponent
to be roughly equal to the maximum value of the local ex-
ponent, which is where the universal behavior sets in. As can
be seen in Fig. 5!a" the approach to the maximum is almost
vertical, which implies that ' remains constant during a cer-
tain time before pinch. This allows us to approximate the
aspect ratio where universality is reached by the macroscopic
aspect ratio 'i of the cavity at the start of the universal re-
gime. Using Eq. !2" we can predict this value once the char-
acteristic initial aspect ratio 'i for each cavity is known.

This quantity 'i however is not straightforward to deter-
mine since the configuration before impact is simply a flat
surface and the only value available to characterize the initial
conditions is the Froude number. We are nevertheless able to
provide an estimate for 'i as illustrated in Fig. 7!a" which
shows the cavity shape at the beginning of the universal
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FIG. 6. !Color online" The local Froude number for system !i"
and an impact Froude number Fr=3.4 !cyan, rightmost curve" and
Fr=4000 !black" and the local Weber number for system !ii" with
configuration A !red, dark gray" and B !gray, leftmost curve". The
onset of the universal regime can be located roughly after the re-
spective nondimensional quantities have become larger than order
unity !horizontal dashed line".

GEKLE et al. PHYSICAL REVIEW E 80, 036305 !2009"

036305-4



regime. The horizontal size of this cavity is its maximum
radial expansion Rmax. The characteristic vertical length scale
can be assumed to be proportional to the depth of eventual
closure zc. For both quantities the dependence on initial con-
ditions can be written in terms of scaling laws with the im-
pact Froude number. The horizontal length scales approxi-
mately as Rmax)Fr1/4 #14$, while the vertical length behaves
as zc)Fr1/2 #14,30$.

With these two quantities in hand we can estimate the
characteristic initial aspect ratio as

'i = C
Rmax

zc
( 2K−1/4 Fr−1/4 !3"

with C and K constants of order unity. Inserting this 'i into
Eq. !2" and solving for &!Fr", again neglecting d& /d ln %,
gives

& =
ln!K Fr"

2 ln!K Fr" − 2
. !4"

We can thus predict the experimentally observable averaged
exponent, which is found in excellent agreement with #4$ as
demonstrated by Fig. 7!b". Thus, the way how the experi-
mentally and numerically observed exponents depend on the
global impact parameters #4$ constitutes an impressive mani-
festation of universal behavior in this system.

In conclusion, we have demonstrated that the universal
theory of #12,27$ faithfully predicts the approach of the neck
radius for inviscid axisymmetric bubble pinch-off in four dif-
ferent systems widely studied in the literature over the past
years. Remarkably, however, the duration of the final regime
is shown to be strongly dependent on the type of the system
and on the various control parameters employed. While it
lies easily within experimentally accessible time scales
!)ms" for an impacting circular disk, it can be as low as a
few nanoseconds for gas bubbles injected through a small
orifice into a quiescent liquid pool. We were able to trace this
difference back to the relative importance of the respective
driving forces. Our findings reconcile the prediction of uni-
versality in bubble pinch-off #11,12$ with an apparent depen-
dence on initial conditions #4$, an apparently constant scaling
exponent #5,6,8$, and with the observation that noninertial
forces can be dominant in many experimental settings
#9,10,20$.

This work is part of the program of the Stichting FOM,
which is financially supported by NWO.
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