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Abstract

One of the most challenging aspects in the accurate simulation of three-dimensional soft objects such as
vesicles or biological cells is the computation of membrane bending forces. The origin of this difficulty stems
from the need to numerically evaluate a fourth order derivative on the discretized surface geometry. Here we
investigate six different algorithms to compute membrane bending forces, including regularly used methods
as well as novel ones. All are based on the same physical model (due to Canham and Helfrich) and start from
a surface discretization with flat triangles. At the same time, they differ substantially in their numerical
approach. We start by comparing the numerically obtained mean curvature, the Laplace-Beltrami operator
of the mean curvature and finally the surface force density to analytical results for the discocyte resting
shape of a red blood cell. We find that none of the considered algorithms converges to zero error at all
nodes and that for some algorithms the error even diverges. There is furthermore a pronounced influence
of the mesh structure: Discretizations with more irregular triangles and node connectivity present serious
difficulties for most investigated methods.

To assess the behavior of the algorithms in a realistic physical application, we investigate the deformation
of an initially spherical capsule in a linear shear flow at small Reynolds numbers. To exclude any influence
of the flow solver, two conceptually very different solvers are employed: the Lattice-Boltzmann and the
Boundary Integral Method. Despite the largely different quality of the bending algorithms when applied to
the static red blood cell, we find that in the actual flow situation most algorithms give consistent results for
both hydrodynamic solvers. Even so, a short review of earlier works reveals a wide scattering of reported
results for, e.g., the Taylor deformation parameter.

Besides the presented application to biofluidic systems, the investigated algorithms are also of high
relevance to the computer graphics and numerical mathematics communities.

Keywords: Helfrich Bending, Laplace-Beltrami Operator, Mean Curvature, Capsule Deformation in Shear
Flow

1. Introduction

The computer simulation of soft deformable objects such as cells, synthetic capsules or vesicles in three-
dimensional (3D) hydrodynamic flows is a rapidly increasing field in computational physics. The smallest
investigated systems consider the dynamic motion of a single object in shear or channel flow [1–15], in a
gravitational field [16–19], through narrow constrictions [20–22], or the diffusion of small particles near elastic
membranes [23]. On a larger scale, a number of studies focus on the effective viscosity of dense suspensions
[24–29] which is closely connected to the formation of cell-free layers near the channel walls in case of blood
flow [30–33]. The investigation of suspensions containing two or more types of particles is another important
field in which usually one focuses on the cross-streamline migration of the particles [30, 32, 34–41]. From a
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computational perspective, an adequate method for the above problems requires two ingredients: Solution
of a hydrodynamic problem for the flow for which a variety of methods such as Boundary Integral [42–44],
Lattice-Boltzmann [28, 45–48] or particle methods [49–52] are available, and solution of a solid mechanics
problem for the objects’ interfaces.

The investigated objects are filled with fluid, separated from the outside by a membrane which is typi-
cally modeled as an infinitely thin elastic sheet. Forces originating from the linearized deformation of such a
sheet can be split into in-plane elasticity (shear and area dilatation) and out-of-plane (bending) components.
For the former a number of elastic laws such as neo-Hookean (e.g. [3, 53]) or Skalak [54] have been proposed,
depending on the physical properties of the studied object, and recently different numerical modeling ap-
proaches have been compared [55]. Bending contributions are very often described via a simple law proposed
by Canham and Helfrich [56, 57], stating that the local bending energy density is proportional to the square
of the local mean curvature. Depending on the type of object, different contributions may dominate the
total force. Vesicles, for example, lack shear elasticity and are thus entirely dominated by bending forces
[5–7, 11, 58]. For elastic capsules, on the other hand, the elasticity governs most of the behavior, with
bending causing mostly secondary effects [3, 28, 53, 58]. However, in certain situations it can become the
dominating factor. For instance, it defines the wavelength of local wrinkles appearing for capsules especially
at low shear rates due to local compressive forces [3, 53, 59–63]. Neglecting the bending rigidity in this case
reduces not only the numerical stability but also the physical reliance greatly, making realistic simulations
practically impossible [3, 28, 53, 61, 64]. For red blood cells, both elasticity and bending are relevant, where
the latter determines the equilibrium shape [65]. Hence, the accuracy of the employed bending algorithm is
of major concern.

To compute the mechanics of the membrane, it is typically discretized via a set of marker points whose
positions are advected with the hydrodynamic flow. The most flexible, most easy-to-implement and therefore
also one of the most widely used methods to interpolate between the nodes is a discretization via flat
triangles [18, 43, 58, 63, 66–69]. Recently, subdivision surface methods [4, 70–74] are becoming increasingly
popular, too. Other methods include curved triangles [2, 75, 76], B-Splines [3], or global approaches such
as spherical harmonics [10, 20, 77]. The latter are most efficient for not too large deformations. Bending
forces are computed as the derivative of the out-of-plane stress which, by the principle of virtual work, is the
variational derivative of the bending energy [78, 79]. Since the mean curvature already contains the second
derivative, in total the fourth derivative of the surface geometry is required. This poses a severe algorithmic
and numerical challenge because the surface discretizations are often not C4 smooth.

Here we study a set of six algorithms to compute the bending forces for the most common case of a
membrane discretized via flat triangles. A major difference between the algorithms is their approach on the
Laplace-Beltrami operator, a key component of the bending forces. Note that its discretization is subject
to active research [80–87]. For this work, we employ methods that are devised by or based on principles of
Kantor and Nelson ([88], hereafter called Method A), Gompper and Kroll ([89], Method B), Meyer et al.
([90], Method C), Belkin et al. ([84], Method D), Farutin et al. ([68], Method E) and Loop and Cirak et
al. ([73, 74], Method S). The latter, albeit being a subdivision method, also departs from flat triangles. To
the best of our knowledge, no publication has so far used Belkin et al.’s discretization (Method D) for the
computation of bending forces. In a recent work, Tsubota [69] compared three different algorithms akin to
Methods A and C. He considered a shear flow setup and the equilibrium shape of a red blood cell (RBC),
finding that Method A shows notable deviations to C. No comparison with an analytically solvable reference
shape or earlier simulation work was attempted.

As a start we calculate the discretization error for the analytically known surface of an RBC. We find
a strong difference in the quality and robustness of the algorithms: Most are very sensitive to the surface
discretization and none converge at all nodes as the resolution is increased. The results are summarized in
tables 2 and 3 (see page 17). To assess the performance of the bending algorithms in a typical flow setup,
we then investigate the deformation of an initially spherical capsule in a viscous shear flow. The capsule is
endowed with both shear and bending rigidity. To exclude any artifacts possibly arising from the flow solver,
we use the Boundary Integral (BIM) as well as the Lattice-Boltzmann method (LBM). In general we find
a very good agreement between both approaches. The deviations between the six bending algorithms are
much less pronounced in this setup than in the analytical part. A comparison with the literature, however,
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reveals a wide scattering of reported values for the Taylor deformation parameter.
We finally note that our study may also be relevant in other areas where the numerical evaluation of

the Laplace-Beltrami operator, which is a main focus of this work, plays an important role. In geometry
processing, for example, it is often used for the visualization of high-curvature regimes, highlighting of surface
details, or surface smoothing and reconstruction [81, 84, 90, 91].

2. Computation of bending forces

2.1. The physical model of the bending energy
All bending algorithms used in the present work and in the majority of the literature depart from the

seminal works of Canham [56] and Helfrich [57]. They considered a three-dimensional soft object with an
infinitely thin interface endowed with bending resistance. They then proposed the following constitutive law
for the bending energy:

EB = 2κB

∫
S

[H(x)]
2

dS(x) . (1)

Henceforth, S is the instantaneous smooth surface of the object and κB is the bending modulus. The local
mean curvature is given by H = 1

2 (c1 + c2), where c1 and c2 are the local principal curvatures. H is taken
to be positive for a sphere. In principle an additional term dependent on the Gaussian curvature appears in
the bending energy. Fortunately, this term is constant if the topology of the object does not change [57, 89].
Thus it is negligible for the purpose of force computations. A spontaneous (or reference) curvature can be
included in equation (1) [65], but for simplicity we take the minimum energy reference state as a flat sheet.

For later convenience, we introduce an alternative expression for H [81]:

H(x) =
1

2

3∑
i=1

(∆Sxi)ni(x) , x ∈ S . (2)

n(x) is the outer normal vector of the membrane surface S at position x and ∆S = ∇S ·∇S denotes the
Laplace-Beltrami operator with ∇S being the surface gradient. Subscripts indicate vector components.

2.2. Principles for the computation of bending forces
The general goal is to compute the forces from the bending energy (1) while using an approximation for

the surface S. As outlined in the introduction, we approximate S via flat triangles, i.e. each surface element
consists of three nodes (vertices) and three straight edges. The force is then required at each node x(i) with
i = 1, . . . , N . We denote by N the number of nodes and by NT the number of triangles.

To be more precise, the hydrodynamic simulations performed in section 4 require either the force F h(x(i))
(LBM) or the traction jump 4fh(x(i)) := (σ+ − σ−) · n (BIM). σ+ and σ− are the stress tensors at the
outside and inside of S, respectively, and n again the outer normal vector. The force equilibrium conditions
read [53, 58]

F h = −F and (3)

4fh = −f . (4)

Depending on the employed bending algorithm, either the force F or the surface force density f is obtained.
Conversion between both is thus necessary and will be described in section 2.6.

Computation of F or f means to perform a variational derivative of equation (1) with respect to small
deformations of the surface. The six algorithms considered in this work (named A–E and S) effectively
calculate this derivative and are summarized in table 1. For convenience, the online version of the article
also allows to click on each occurrence of their names, enabling quick jumps to their respective chapters.
From a conceptual standpoint, there is a major difference between the methods. The first two algorithms
(Methods A and B) first discretize the surface and then perform the variational derivative by means of a
direct differentiation with respect to the nodes’ positions (termed “force formulation” below). This yields
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Method A B C D E S

Basic ingredient
from Kantor [88] Gompper [89] Meyer [90] Belkin [84] Farutin [68] Cirak [74]

Result Force Force Force density Force density Force density Force density

Derivative Nodal Nodal Variational Variational Variational FEM

Basic idea Normal vector
discretization

∆S via co-
tangent scheme

∆S via co-
tangent scheme

∆S via heat
equation

Parabolic
fitting

Subdivision
surface

Table 1: Overview of the six methods A –E and S employed in this work.

the force F . The three methods C –E perform the discretization after the variational derivative (termed
“variational formulation” by us) and thus provide the force density f . The last method S is similar to the
force formulation as it introduces the discretization beforehand. However, it uses the weak formulation,
solving a linear system of discretized integral equations by means of the finite element method (FEM). This
leads again to the force density f .

2.3. Force formulation
The first two Methods A and B first discretize the integral and the mean curvature from equation (1).

The energy EB then depends on the node coordinates x(i) explicitly. By the principle of virtual work, they
subsequently derive the force according to

F (x(i)) = − ∂EB

∂x(i)
, i = 1, . . . , N . (5)

This derivative can often be performed analytically.

2.3.1. Method A
Method A starts with the expression

∫
S

(H2 − 2K) dS =
∫
S

(∂αn) · (∂αn) dS [89]. The integral with the
Gaussian curvature K remains constant due to the Gauss-Bonnet theorem if the topology does not change
and hence plays no role for the force calculation. The mean curvature part can be identified with equation (1).
A direct discretization of the integral together with the approximation of equilateral triangles [89] then leads
to the often employed expression (e.g. [9, 22, 27, 28, 32, 33, 36, 37, 40, 41, 52, 69, 88, 89, 92–95])

EB ≈ 2κ̃B

∑
〈i,j〉

(1− cos θij) , (6)

where the sum runs once over all edges 〈i, j〉. θij is the angle between the normal vectors of the two triangles
that contain edge 〈i, j〉.

One critical issue with this formula is the value of κ̃B. It is usually not identical to the physical κB

appearing in equation (1). In case of a sphere approximated by equilateral triangles it is simply κ̃B =
√

3κB.
But in general the value depends on the shape of the object [89]. Nevertheless, one usually finds this value
also being used for non-spherical shapes. Here we set κ̃B =

√
3κB, too. We remark that one could use

equation (6) as the model equation directly, i.e. to take it not as an approximation of the Helfrich law in
the first place. In this case our analysis must be viewed as addressing the question “how near or far away”
it is from the Helfrich model rather than “how well of an approximation” it is.

A further simplification encountered from time to time is the usage of the small angle approximation
cos θij ≈ 1 − 1

2θ
2
ij [28, 29, 39, 52]. Its advantage is that it does not require the computation of a sine. We

also tested this alternative and found a slight increase of the errors presented below. But because the error
increase remained below 5 % and because the hydrodynamic simulations turned out to be insensitive to it,
we restrict ourselves to the more common equation (6).

The analytic formulas for the derivative in equation (5) are presented in great detail in [28, ch. C.2] for
the small angle approximation. Apart from the occurrence of an additional sine (stemming from the above
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cosine), they can be also used unchanged for equation (6) and will therefore not be repeated here.1 After
knowing the force F at each node, the force density can be computed as outlined in section 2.6 below. This
method is identical to “model KN” from Tsubota [69].

2.3.2. Method B
Gompper and Kroll [89] approximated the Laplace-Beltrami operator in the expression for the mean

curvature from equation (2) by a variant of the so-called cotangent scheme, namely

∆Sx
(i)
l ≈

∑
j(i)(cotϑ

(ij)
1 + cotϑ

(ij)
2 )(x

(i)
l − x

(j)
l )

2A
(i)
Voronoi

, i = 1, . . . , N , l = 1, 2, 3 , (7)

where the sum runs over the first ring of neighbor nodes of x(i). The integral from equation (1) is then
discretized as

EB ≈
κB

2

N∑
i=1

(
2H(x(i))

)2

A
(i)
Voronoi , (8)

with N denoting the total number of nodes. ϑ
(ij)
1 and ϑ

(ij)
2 are the angles opposite to the edge 〈i, j〉 in

the triangles which contain nodes x(j−1) and x(j+1), respectively. See figure 1 for a sketch. A(i)
Voronoi is the

Voronoi area of node x(i), defined by

A
(i)
Voronoi :=

1

8

∑
j(i)

(cotϑ
(ij)
1 + cotϑ

(ij)
2 )

∣∣x(i) − x(j)
∣∣2 , i = 1, . . . , N . (9)

The area is geometrically contoured by connecting the circumcenter points of the triangles. It must be noted
that this Voronoi area does not lead to an exact covering of the surface if non-obtuse triangles occur [90],
as outlined in the description of Method C below. Nevertheless, similar to Gompper and Kroll we use it for
all triangles, no matter if obtuse or not.

x(j−1)

x(j)

x(j+1)

x(i)

〈i, j〉ϑ
(ij)
1

ϑ
(ij)
2

Figure 1: Ring-1 neighbors of some node x(i). We marked one of the neighbors arbitrarily as x(j). The shaded region depicts
the Voronoi area A(i)

Voronoi.

The publication by Gompper and Kroll only provides the discretizations outlined above. To arrive at the
force at node x(i), we compute the gradient in equation (5) with the energy from equation (8) analytically,
as explained in the Appendix A. Finally, the approach from section 2.6 is used to obtain the force density.

The solver presented in references [49, 50] and subsequent publications [96–100] is based on equation (8).
“Model J” from Tsubota [69] is somewhat similar in spirit, but more simplistic.

1For the sake of completeness we note that for a non-zero reference state the formula θij = arccos(ni · nj) as given in
[28, ch. C.2] is only valid for convex parts of the surface. Otherwise, the value needs to be multiplied with −1 to correctly
capture the reference shape. Here, ni (nj) is the normal vector of the i’th (j’th) triangle. Furthermore, care must be taken if√

1− (ni · nj)2 ≈ 0, because then divisions through zero would occur. In this case the correct resulting force is simply zero for
zero reference states. For non-zero reference states one needs to compute the correct value by an analytic limiting procedure.
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2.4. Variational formulations
The three Methods C –E depart from an analytical and exact expression for the surface force density. It

follows from the first variation of the bending energy δEB = −
∫
S
f · δx dS as [8, 78, 79]

f(x) = 2κB

(
2H(H2 −K) + ∆SH

)
n , x ∈ S . (10)

Here, K = c1c2 is the Gaussian curvature with c1 and c2 being again the principal curvatures. n is the outer
normal vector at x whose numerical computation also depends on the employed method. Similar expressions
are obtained when a spontaneous or reference curvature is included [79]. The methods presented hereafter
differ by how they compute the different quantities appearing in equation (10).

2.4.1. Method C
Meyer et al. [90] derive the following discretization for the Laplace-Beltrami operator on triangulated

meshes from a contour integral around node x(i) (also see references [58, 81]):

∆Sw(x(i)) ≈
∑
j(i)(cotϑ

(ij)
1 + cotϑ

(ij)
2 )(w(x(i))− w(x(j)))

2A
(i)
mixed

, i = 1, . . . , N . (11)

w is an arbitrary two-times continuously differentiable function on S. The notation is otherwise identical
to section 2.3.2. Obviously, it is another variant of the cotangent scheme. Comparing this equation with
equation (7), we immediately see that they are almost the same with the sole difference being that the “mixed
area” A(i)

mixed rather than the Voronoi area A(i)
Voronoi is used. For rings with non-obtuse triangles, one simply

has A(i)
Voronoi = A

(i)
mixed. However, using the Voronoi area for obtuse triangles leads to an incomplete tiling

of the surface area, i.e. the sum of all Voronoi areas is not necessarily the same as the total surface area.
For this reason, Meyer et al. introduced the mixed area: Rather than forming the area by all circumcenter
points of all triangles, it uses the point in the middle of edges that are opposite of obtuse angles. Its precise
definition and algorithm can be found in [90].

The mixed area aside, the second major difference compared to Method B is that equation (10) is
being evaluated directly. Hence, after the mean curvature has been computed via equations (11) and (2),
the Laplace-Beltrami operator of the mean curvature, ∆SH, is calculated by applying formula (11) again
on H [58].

For the Gaussian curvature K, Meyer et al. give the following simple expression [90]:

K(x(i)) =
1

A
(i)
mixed

(
2π −

∑
t

θ
(i)
t

)
, i = 1, . . . , N . (12)

This is a discretization of the Gauss-Bonnet theorem. The sum runs over all triangles t sharing node x(i),
and θ(i)

t is the angle in triangle t at node x(i).
The last ingredient is the normal vector n(x(i)). Several approaches exist to derive its value from the

well-defined normal vectors of the triangles. Jin et al. [101] compared several often used methods. They
concluded that summing the normal vectors of the triangles containing node x(i) and weighting them with
the angle θ(i)

t gives the best results in many cases (“mean weighted by angle” approach, MWA). An often
used alternative is to normalize the result of ∆Sx. However, we found that the MWA algorithm provides
superior results and thus we will adopt it in this work.

We finally remark that e.g. references [8, 12, 16, 18, 23, 35, 58, 66, 67, 80, 81, 102] and [44, 103–105]
use the same or similar algorithms (where the latter refer to it as contour integral based method and only
employ it for H). Method C is “model H” from Tsubota [69].
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2.4.2. Method D
Method D differs from Method C by the discretization of the Laplace-Beltrami operator. It is based on

a kernel of the diffusion or heat equation, and reads [84]

∆Sw(x(i)) ≈ 1

4πa2
i

NT∑
t=1

At
3

∑
p∈V (t)

exp

(
− 1

4ai

∣∣p− x(i)
∣∣2)(w(x(i))− w(p)

)
, i = 1, . . . , N . (13)

NT denotes the number of triangles, V (t) is the set of vertices of triangle t, and At its area. Furthermore,
ai is some free parameter that represents the neighborhood of node x(i). Because it has the dimension of a
squared length, we use ai = A

(i)
mixed in the following. Other choices lead to very similar results.

Obviously, a single evaluation of the operator has a complexity of O(NT) ≈ O(N), where N is the
number of nodes. Since we need to compute the bending forces at all vertices, Method D has an overall
complexity of O(N2) which can become prohibitively slow for larger meshes. On the other hand, the large
supports leads to an insensitivity regarding noise [84], a fact which we also find reflected in our results below.

In practice we have slightly modified the above algorithm: Imagine a plane that goes through the
centroid [106] of the object and with its normal vector pointing from the centroid to node x(i). Then we
only take into account points that lie above this plane. Otherwise, nodes that lie close in 3D space but are
located far apart when measured along the surface (geodesic distance) would lead to large errors. This is
the usual case for the dimples of red blood cells studied below.

Apart from the discretization of ∆S, the remaining parts of the algorithm are identical to Method C.
Especially note that the Gaussian curvature is still computed with Meyer et al.’s discretization given by
equation (12) (because reference [84] does not provide an alternative), and the normal vector algorithm
remains MWA. To the best of our knowledge, no publication so far used Belkin et al.’s discretization in the
context of bending models.

It is also worth noticing that Li et al. [87] developed a similar formulation in a recent paper. Rather
than using the Euclidean distance

∣∣p− x(i)
∣∣ in the exponential function, they employ the geodesic distance

between these points. Furthermore they do not take into account all triangles but only those within a
certain cutoff (measured, again, via the geodesic distance). For most cases with mediocre resolution they
report slightly better results for the mean curvature than for Belkin et al.’s discretization, becoming (mostly)
better with increasing resolutions. Because of the only small advantage at practical resolutions and because
it is non-trivial and often expensive to compute the geodesic distance between points on general triangular
meshes [107], we have not yet attempted its implementation.

2.4.3. Method E
Instead of using a direct finite-differences like approach, Farutin et al. [68] employ a least square fitting

procedure. The algorithm consists of three steps: In the first step, a local coordinate system at each node
is created. Two axes are arbitrarily chosen to be parallel to the approximated tangential plane, while the
third axis is parallel to the approximated normal vector. We estimate the normal vector again via the MWA
algorithm. Next, one paraboloid is fitted to each of the three components of all the ring-1 nodes around
each vertex. This involves the solution of three 5× 5 linear systems per node. The fitting coefficients can be
identified with local derivatives. They therefore provide a direct method to compute the mean and Gaussian
curvature, the metric tensor and a refined approximation for the normal vector via standard differential
geometry [68]. The final step fits a paraboloid to the mean curvature, yielding the coefficients required to
evaluate ∆SH. Putting everything together, the force density can then be computed via formula (10).

We remark that this algorithm requires each node to have at least five neighbors. Otherwise, the
paraboloid would not be uniquely defined. For nodes with less than five neighbors, we extend the mean
square fitting to include the ring-2. This leads to a well-defined problem for general meshes. Furthermore,
in principle more rings can always be included as shortly discussed in section 3.5. An efficient algorithm for
higher ring orders is breadth-first search.

Besides [68], publications that use the same basic idea to obtain the mean curvature include e.g. references
[67, 81, 104, 108], although they fit a single paraboloid onto the surface itself (rather than to the components
of the coordinates).
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2.5. Method S
Method S is somewhat set apart from the previous five algorithms. Departing from the usual mesh with

flat triangles, the subdivision scheme of Loop [73, 74] is applied to refine and average the surface. The method
converges to a smooth limit surface which is C2 almost everywhere, corresponding to quartic box-splines.
An exception are vertices that do not have six neighbors. There it is reduced to C1. With this method, the
displacement field of an element depends on the (usually 12) neighboring triangles. In addition to being a
versatile geometrical representation useful in computer aided design, the Loop subdivision is particularly
well adapted to physical problems involving first and second-order derivatives such as infinitely thin shells
described by a Kirchoff-Love energy functional. Indeed, the nodal forces at the membrane are determined
by using the virtual work principle in its weak formulation, taking into account the membrane and bending
strains [74]. This leads to a linear system of discretized integral equations that is treated with the finite
element method. It means notably that neither Gaussian and mean curvatures nor the Laplace-Beltrami
operator of the mean curvature need to be calculated explicitly. Still, the Gaussian and the mean curvature
can be obtained from byproducts of the result, and we show them in section 3. We use GMRES [109] with
a residuum of 10−9 to solve the linear system. The complexity in general is therefore O(N2). This method
has already been applied to capsules without bending resistance in a planar elongation flow [13] and droplets
with dilational and shear surface viscosities [70] with a full validation section in each case. See reference [70]
for further details.

References [4, 13, 70–72] also use similar subdivision surfaces in the biofluid context.

2.6. Conversion from forces to surface force densities
As already mentioned above, the quantity that is required to couple the membrane bending mechanics

to the hydrodynamic flow depends on the employed flow solver. For our chosen LBM implementation one
needs the force F at each surface node x(i), while for BIM the surface force density f is required. By
designating a certain area surrounding each node as the “node area” one can interconvert between both
quantities by simply multiplying (dividing) the force density (force) by the respective node area [32, 69, 72].
This interconversion is necessary for a comparison of all six algorithms with a single flow solver, as Methods A
and B yield the force F while C, D, E and S yield the force density f .

We use Meyer et al.’s mixed area Amixed already introduced in section 2.4.1 because of its perfect surface
tiling property. Hence, the conversion is performed by the formula

f(x(i)) ≈ 1

A
(i)
mixed

F (x(i)) , i = 1, . . . , N . (14)

3. Benchmarking against analytical results for a static red blood cell

3.1. Red blood cell shape and methodology
RBC shape and discretizations. To quantitatively assess the quality and differences between the six bending
approaches presented in the previous section, we consider the typical RBC shape as shown in figure 2. We
choose this shape for two reasons: Firstly, it is simple enough to allow derivations of analytical expressions
for all relevant quantities, including the force density itself, by means of differential geometry and standard
computer algebra software. Secondly, it is a realistic shape which has regions where the mean curvature has
different signs (i.e. turning points) and is thus complex enough to serve as a reasonable test subject. An
oblate spheroid, for example, would be simpler to handle, but is a lot farther away from real-world situations
in case of blood flow.

The considered shape can be described by the formula

z = ±R
2

√
1− ρ2

(
C0 + C1ρ

2 + C2ρ
4
)

(15)

with ρ := 1
R

√
x2 + y2 and the constants C0 = 0.2072, C1 = 2.0026 and C2 = −1.1228 [110, 111]. R is the

length of the large half-axis of the RBC, and is often taken to be R ≈ 4µm. In this section we use R = 1,
effectively non-dimensionalizing all lengths by the RBC radius.

8



(a) Homogeneous mesh with 5120 triangles, obtained by re-
fining an icosahedron using Loop’s subdivision algorithm.

(b) Inhomogeneous mesh with 3914 triangles, obtained via
Rivara’s longest-edge bisection algorithm.

Figure 2: Illustrations of the typical red blood cell shape discretized with the two different MT1 methods as described in the
main text. Meshes of type MT2 look very similar (see figure B.18 on page 29), except that the triangles around nodes with
five neighbors are somewhat larger.

The discretization as shown in figure 2a is derived by successively refining a regular icosahedron via
division of each triangle into four new elements according to Loop’s subdivision scheme [73, 74]. The z-
coordinates of the nodes are afterwards modified via application of formula (15). This leads to the very
homogeneous meshes with 320, 1280, 5120, 20480 and 81920 triangles considered below. All of the nodes
have six neighbors, with the exception of exactly twelve vertices retaining only five neighbors for any N .
The meshes with 512 and 2048 triangles are based on a regular octahedron, leading to four or six neighbors.
We call discretizations based on Loop’s refinement “MT1”.

We also assess the behavior on three other mesh types for Methods A –E. The first is the inhomogeneous
one shown in figure 2b. This mesh with 3914 triangles is obtained by starting from an icosahedron refined
to 320 triangles via Loop’s scheme (MT1). We then apply Rivara’s longest-edge bisection algorithm [112]
three times and transform the result via equation (15) to the RBC. Each node has four to ten neighbors.
The second additional mesh is very similar to the homogeneous geometries described above, except that new
nodes introduced during the refinement are simply placed at the middle of edges rather than according to
Loop’s algorithm. This is an often used scheme, and results in a slightly different structure. We will refer
to it as “MT2” and outline observed differences in the main text where appropriate. The actual data can be
found in Appendix B. As a third mesh we consider the application of Rivara’s algorithm to an MT2 object
with 320 elements, resulting in 3848 triangles. See the supplementary information (SI) for a collection of
mesh properties such as typical edge lengths.

Evaluation and error measures. All numerical results were obtained using double precision arithmetic. They
are plotted as functions of the polar angle θi, computed via

θi = arccos

(
zi√

x2
i + y2

i + z2
i

)
, (16)

where xi, yi and zi are the Cartesian coordinates of node x(i), i = 1, . . . , N . The RBC described by
equation (15) is axisymmetric and hence the results at each position will be plotted as a function of the
polar angle only. This corresponds to a projection of the azimuthal direction into a single plane. We do
not just compute the data at some cross section because the mesh is non-axisymmetric and hence results
do vary with the azimuthal angle.

The relative errors of the normal vector, the mean curvature and the force density are computed as

9



normalized Euclidean norms:

εn(θi) := |na(x(i))− nn(x(i))| , εH(θi) :=
|Ha(x(i))−Hn(x(i))|

max |Ha|
, εf (θi) :=

|fa(x(i))− fn(x(i))|
max |fa|

, (17)

where the superscripts a and n denote the analytical and the numerical value, respectively. Errors for the
Gaussian curvature, εK , and the Laplace-Beltrami operator of H, ε∆SH , are handled the same way as εH .
Note that εn is the error relative to the length of the normal vector |na| = 1. Furthermore, we compute
the errors relative to the maximal analytic values because transitions through zero exist. Using the local
analytic results as the reference would lead to greatly exaggerated error values: The numeric algorithms
never produce zero values at precisely the same positions as the analytics. Approximately, one has for R = 1
and κB = 1: max |Ha| ≈ 2.20098, max |Ka| ≈ 3.60620, max |∆SH

a| ≈ 109.095 and max |fa| ≈ 189.457.
Continuing, the tables and graphics presented in this work show two different measures for the total

error. The maximum error of all the nodes is calculated as maxi ε•(θi) and represents the local worst case
result. On the other hand, the average error is computed as

∑N
i=1 ε•(θi)/N with N being the number of

nodes on the RBC. It measures the overall performance of the algorithm for viscous flows. More precisely
speaking, the average can be interpreted as a discretization of a continuous error measure, for example∑N
i=1 εf (θi)/N ∼

∫
S
|f−fa|dS, because 1/N ∼ h2 ∼ dS where h is the mean edge length. Similar integrals

determine the flow in the Stokes regime, compare section 4.3.1. The average measure is therefore the more
meaningful quantity in this particular application. Indeed, previous studies reported that a few problematic
nodes do not affect the overall hydrodynamic results significantly [68]. We confirm this in section 4.

Below we show the numerical results as a function of θ. Corresponding images of the errors can be found
in the supplementary material. Furthermore, we display the two error measures (maximum and average) as
a function of the inverse of the mean edge length h or, equivalently, as a function of triangle count NT.

We start by considering the normal vector, the mean curvature and the Laplace-Beltrami operator of the
mean curvature. These are required for the evaluation of equation (10) in the variational formulation. The
Gaussian curvature is considered in the supplementary information. As a last step we combine the results to
get the force density f , where we also include the two algorithms based on the force formulation. Tables 2
and 3 at the end of this section summarize all results.

3.2. Normal vector
As outlined in section 2.4, we use the MWA algorithm to compute the normal vector for Methods C

and D. In case of Method E, the MWA normal vector is taken as the input and the fit procedure yields a
new result. Farutin et al. [68] stated a convergence rate for E of O(h2).

Figure 3 shows the maximum and average of the relative error εn of the normal vector for the MT1
based meshes. Obviously, E as well as MWA converge roughly with O(h2) in both error measures at the
beginning. For E this is in line with the report of Farutin et al. At larger resolutions MWA appears to
decay as O(h) for the maximum error. We remark that the computation of n by normalization of ∆Sx for
Methods C and D often leads to errors that are an order of magnitude larger.

The subdivision based Method S is a bit different. Its maximal error tends to behave first as O(h2) and
then as O(h), similar to MWA, although the absolute values are roughly one order of magnitude smaller.
The major error source are nodes that are members of the ring-1 neighborhood of vertices that have only
five neighbors, i.e. where the surface is only C1 smooth. On the other hand, the majority of the surface is
C2 which leads to the observed O(h3) convergence of the average error.

Considering the inhomogeneous mesh with 3914 triangles, both MWA and Method E are found to be
sensitive to irregularities, albeit E is a bit less affected. Furthermore, both show similar behavior on the
second mesh type MT2, except that MWA decays as O(h) starting with 5120 elements (see figure B.19 in
Appendix B).

3.3. Mean curvature
The mean curvature H is one of the central ingredients for the computation of the bending energy (cf.

equation (1)) and, subsequently, the bending forces. However, it is explicitly required only for Methods C,
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Figure 3: The maximum and average of the relative error εn of the normal vector as a function of resolution NT or, equivalently,
as a function of the inverse of the mean edge length h for the RBC shape MT1. MWA is the “mean weighted by angle” algorithm
from [101]. Black lines without symbols depict typical scaling behaviors. Results for the inhomogeneous mesh with 3914 triangles
are highlighted by the small vertical line at the top. The numerical values and a breakdown per node as a function of the polar
angle θ can be found in the supplementary material. The results for the MT2 mesh types are in figure B.19.

D and E. Method S yields it as a byproduct. The mean curvature from these four approaches is shown in
figure 4 in comparison to the analytical result. Correspondingly, figure 5 presents the maximal and average
errors.

Method C seems to retain a systematic maximal error because the results at a few nodes slightly above
θ = 3π/8 do not converge to the correct result (identical to the highlighted nodes in figure 9c on page 15).
These nodes have six neighbors, just like most of the other vertices and thus are not very “special” at first
sight. For further analysis we turn to Xu [80] who gives a sufficient condition for convergence: Firstly, the
node must have six neighbors. Secondly, there must exist a local parametric representation q ∈ R2 of the
surface such that qj = qj−1 + qj+1 − qi where i indicates some node and j enumerates its six neighbors.
If we choose at each node a coordinate system with two axes in the tangential plane and the last axis
along the (analytic) normal vector, we find that this condition is most severely violated at precisely the
non-converging points. This suggests why we find a systematic error. Note, however, that this is merely
a sufficient rather than a necessary condition for convergence. As such, convergence can and is observed
at other nodes although they also violate this condition or do not even have six neighbors. The same is
observed for the MT2 meshes (figure B.20 in Appendix B).

Both Method D’s and E’s approaches lead to convergent results regarding the maximum error. The rate
is roughly O(h) for Method E which is consistent with reference [68]. Hence we find that algorithm E is
superior to C as also noticed by Zinchenko et al. [104] for two variants of the methods. For D the rate seems
to be ≈ O(h2), albeit it has error levels that are typically half to one order of magnitude larger than E
for the present case. Notice that D’s operator can actually be proven to converge point-wise for arbitrary
meshes and hence also in the here employed Euclidean norm [84], a fact which is reflected in our results.
Method S has problems with the C1 regions as error levels quickly stagnate. The absolute values are still
comparably small.

With respect to the average errors, algorithms C–E display the same behavior: they converge as O(h2).
Method D is still the one with the largest errors. E and C are alike, with E having a slight edge. The
subdivision scheme S appears to converge faster at first. At higher resolutions, the rate reduces to O(h2).

Finally, we consider the inhomogeneous mesh with 3914 triangles. Algorithm E shows a serious increase
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Figure 4: The mean curvature H of a MT1 RBC obtained from the four different algorithms (symbols) and compared to the
analytical result (dashed line) as a function of the polar angle θ. The errors at each node can be found in the supplementary
information.
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Figure 5: The maximum and average of the relative error εH of the mean curvature (MT1). For the numeric values, see the
supplementary information. The results for MT2 are in figure B.20.
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Figure 6: The result of evaluating the Laplace-Beltrami operator on the mean curvature, ∆SH. MT1 meshes. Figures with
the corresponding errors can be found in the supplementary information.
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Figure 7: The maximum and average of the relative error of the Laplace-Beltrami operator applied to H. MT1 meshes. The
results for MT2 are in figure B.21. The numeric values are in the supplementary information.

of the error while it is tremendous for Method C. The largest errors for C come from nodes with only four
neighbors, although some of them show smaller deviations (also note that the meshes with NT = 512 and
NT = 2048 have vertices with four adjacent nodes). On the other hand, Method D is largely unaffected by
the irregularities. This indicates that it is more robust than the other algorithms, an observation which can
be attributed to the larger support [84].

We remark that the MT2 meshes lead to the same conclusions, except that the error magnitudes can
be significantly larger (cf. Appendix B). The Gaussian curvature is analyzed in the supplementary material,
revealing similar results.

3.4. Laplace-Beltrami operator of the mean curvature
The remaining quantity that needs to be computed for equation (10) is the Laplace-Beltrami operator of

the mean curvature, ∆SH. As described in section 2.4, it is calculated by applying the Laplace discretization
idea again to H for C, D and E. Method S does not easily allow the computation of ∆SH. Considering the
results from the previous section 3.3, we do not expect Method C to converge. Our findings are shown in
figures 6 and 7.

Obviously, the expectation is met: Method C fails to converge entirely. The maximum of the error even
diverges quickly as O(1/h2) because of the troublesome points already identified for the mean curvature.
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Figure 8: The magnitude of the force density f computed via the six different bending algorithms and compared to the
analytical result. MT1 meshes and κ̂B = 1. The errors are displayed in figure 9.

Algorithm E at first appears to become more precise with higher resolutions in the maximum error measure,
but then appears to diverge with a rate of ≈ O(1/h) for NT > 5120. Indeed, Farutin et al. report the same
trend. In the context of Stokes flow, however, they found that it can still provide very good results [68] (also
see the average error and section 4). Even the deviations for the rather lenient Method D fail to decay with
resolutions beyond 20480 triangles.

Regarding the average error measure, Method C retains a systematic deviation. Methods D and E both
converge with roughly O(h2) in the presented case. Unfortunately, for meshes of type MT2 we observe an
entirely different behavior (see figure B.21 in Appendix B): The rate for D is reduced to O(h), and E fails
to converge (although it does not diverge). Hence, D is again much more robust with respect to different
triangulations than E.

This is also reflected in the results for the inhomogeneous mesh with 3914 triangles (see figure 7).
Method E and especially C depict severe difficulties for both the maximal and average errors, yielding
values that are mostly one to two orders of magnitude larger than for 1280 triangles. In contrast to the
previous sections, Method D also shows some problems for the maximal error, although it can keep the
average error on an adequate level.

3.5. Force density
Finally, we combine all the quantities via equation (10) and get the force density f for Methods C, D

and E. Additionally, Methods A, B and S are applied as described in sections 2.3, 2.5 and 2.6. We plot the
results in figures 8, 9 and 10. The bending modulus has been set to κB = 1 in all cases.

Variational formulation. Since the value of ∆SH dominates equation (10), it is of no surprise that the errors
εf for C, D and E are very similar to ε∆SH . Notably, Method D appears to converge with O(h) only for the
MT2 average error measure but not for the maximal, retaining a systematic deviation there. The maximal
errors for E and C diverge with O(1/h) and O(1/h2), respectively. The averaged error remains roughly
constant for C, but decays as O(h2) for E. As noted above, this last rate does not carry over to the MT2
meshes in Appendix B (figure B.23) where E behaves similar to C. To this end, the error pattern on the
surface differs notably between MT1 (figure 9e) and MT2 (figure B.22e).
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(a) Method A: Nodes without six neigh-
bors are troublesome (also on other
meshes).

(b) Method B: Compared to C other
nodes cause problems. In this particu-
lar case, the nodes with five neighbors.

(c) Method C: The problematic nodes
here are not related to five neighbor re-
gions and are analyzed in section 3.3.

(d) Method D: The circular patterns in-
dicate an independence of the errors of
the mesh topology.

(e) Method E: A circular pattern simi-
lar to Method D appears. Inclusion of
more neighbor-rings leads to more pro-
nounced circular patterns (not shown).

(f) Method S: Problems at nodes with
only five neighbors occur, i.e. where the
surface is only C1 smooth.

Figure 9: 3D illustration of the errors εf of the force density from figure 8 for 5120 triangles. MT1 meshes. The results for
MT2 are in figure B.22. Note the scales of the color bars. A projection of the azimuthal direction onto a single plane can be
found in the supplementary information.
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Figure 10: The maximum and average of the relative error of the force density. MT1 meshes. The results for MT2 are in
figure B.23. For the numerical values see the supplementary information.
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Force formulation. Regarding the force formulation, Method B is alike to C regarding the general behavior.
However, the latter has a notable edge over the first. C is also less (but still a lot) affected by more
irregular triangulations. The same holds for MT2 meshes, too. There are only two possible sources for these
deviations, since both use virtually the same discretization of the Laplace-Beltrami operator as outlined in
section 2.4.1. The first reason could be the imperfect surface tiling used for Method B (Voronoi rather than
mixed area). Secondly, the differing approach for the variational derivative (before and after discretization).
A quick check where we replaced A(i)

mixed with A(i)
Voronoi in Method C (equation (11)) leads to almost identical

values as B (except for the inhomogeneous mesh where the errors are even more extreme). Therefore
we conclude that at least for meshes with mediocre homogeneity the choice of either force or variational
formulation has only a minor influence, in agreement with [69]. On the other hand, a proper surface
tiling turns out to be important. Nevertheless, we remark again that both methods still exhibit very high
sensitivity to the mesh regularity, and both do not converge.

Method A always shows extreme errors: Not only are the absolute values orders of magnitude larger than
for the other methods and its maximal error diverges as O(1/h2), but even the average error increases with
the resolution at a rate of O(1/h) for MT2 meshes (see figure B.23 in Appendix B). The major problems
originate from nodes with a different number of neighbors than six (see figure 9a).

Method S. The subdivision surface algorithm, Method S, exhibits a O(1/h2) divergence of the maximal
error, just like A, B and C. The average error also saturates, although with a significantly smaller value than
the others. As noted before and as clearly visible in figure 9f, the five neighbor regions contain the biggest
troublemakers, most likely because the surface is only C1 smooth there.

Method E with a larger support. We also tested a slight modification of Method E that takes into account
not just the first ring of neighbors for the fitting procedure, but also the second and third rings. The values
are included in the tables in the supplementary material. In general we found three differences: First of all,
for smaller resolutions (NT 6 5120) the errors are larger for higher ring orders. Second, the start of the
O(1/h) section in the maximal error measure is postponed to higher resolutions, but it still exists. Third,
they can handle the inhomogeneous mesh far better but still not as good as approach D. Therefore, we
conclude that taking into account more neighbors benefits the overall robustness of the fitting method (as
reported in [82]), albeit leading to larger errors at mediocre (and thus often practical) resolutions. This is
in line with Method D, which is an extreme case, having all nodes as support. Indeed, the 3D error pattern
of E (figure 9e) becomes more similar to that of algorithm D (figure 9d). But note that the underlying
discretization idea of the latter is completely different.

Final notes. One also has to emphasize the absolute value of the errors: No method yields relative maximal
errors below 10 % for all considered resolution, and they are often in the > 200 % regime for irregular
meshes. This illustrates the basic difficulty of computing a fourth order derivative on triangulated meshes.
We remark that it is theoretically impossible to construct a discrete Laplace-Beltrami operator that satisfies
all expected properties simultaneously [83].

A concise summary of all the results can be found in tables 2 and 3 using the MT2 meshes for Methods
A –E (MT1 is the same or better) and MT1 for Method S. Due to the revealed mesh dependencies, the
exact quality of the algorithms highly depends on the individual case. Still we are positive that the tables
can serve as a general guideline.

4. An elastic capsule in shear flow

4.1. Basic setup
We now analyze the performance of the bending algorithms in the context of Stokes flow. Despite the

sometimes very large deviations compared to the analytics as presented in the previous section, one can
expect a better performance in such an application [68, 69]. As already noted above, viscous flows lead to
an averaging of the errors.
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Method A B C D E S

K
H

∆SH
f

(a) Maximal errors

Method A B C D E S

K
H

∆SH
f

(b) Average errors

Table 2: Summary of the convergence results for the RBC. The symbol indicates
convergence to zero errors, convergence with a systematic error and divergence
as the resolution is increased. K is the Gaussian curvature, H the mean curvature
and f the force density. Note that only in Method D the average errors of the
force density seem to converge to zero, while no algorithm shows convergence of
the maximum error.

Method A B C D E

K
H

∆SH
f

Table 3: Summary of problematic behav-
ior for the inhomogeneous mesh. means
no troubles, labels problems only in the
maximal but not in the average error mea-
sure and indicates a significant increase
of the deviations in both error measures.

ac

xθ

tank treading

Figure 11: 2D illustration of the linear shear system. The actual simulation is three-dimensional. The spherical capsule deforms
to an ellipsoid-like shape. a is the largest and c the smallest half axis, while θ is the inclination angle. The membrane rotates
around the object’s centroid (the so-called “tank-treading” motion).

We consider an initially spherical capsule of radius R placed in a linear shear flow with shear rate γ̇ as
illustrated in figure 11. The Reynolds number is much smaller than one. This is an often studied system and
performance test case in the recent literature [1–4, 8, 10, 55, 62, 69, 71, 75, 102, 113, 114], also motivated
by several experiments that displayed varying results [14, 59, 115]. The infinitely thin capsule surface is
endowed not just with a bending rigidity, but additionally with a shear elasticity as described in the next
section 4.2. Its inside is filled with a Newtonian fluid having the same viscosity as the ambient flow. It is well
known that for not too large shear rates the shape of such an object becomes approximately an ellipsoid.
This state is usually described by the Taylor deformation parameter D := a−c

a+c with the largest and smallest
semi axes a and c, respectively, and the inclination angle θ between the x-axis and a. We extract D and θ
at each time step from an ellipsoid with the same inertia tensor [48, 116].

The system parameters can be cast into two dimensionless values [113]: the dimensionless shear rate
(or elastic capillary number) G := µγ̇R

κS
and the dimensionless ratio between shear and bending resistance

κ̂B := κB

R2κS
. κS is the shear modulus for the in-plane tensions (compare the next section). Note that different

conventions exist in the literature. Furthermore, the reference state for these in-plane tensions is taken to
be the initial sphere, whereas the bending reference state is a flat sheet (also see section 2). Numerically,
the sphere is constructed using Loop’s subdivision as presented in section 3.1 (MT1), just without the final
transformation to the RBC shape. We consider 320, 1280 and 5120 triangles as well as the inhomogeneous
3914 triangle mesh. The results with MT2 meshes are practically identical and will therefore not be discussed
any further.

4.2. In-plane forces
Apart from the bending forces, we additionally take into account elastic in-plane tensions to allow for

comparisons with the existing literature. We choose the widely used neo-Hookean law (e.g. [3, 53]) whose
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in-plane energy density due to stretching can be written as

εS =
κS

6

(
I1 +

1

I2 + 1
− 1

)
. (18)

Other forms exist in the literature. I1 and I2 are the strain invariants. They are related to the principal
in-plane stretch ratios λ1 and λ2 via

I1 = λ2
1 + λ2

2 − 2 and (19a)

I2 = λ2
1λ

2
2 − 1. (19b)

The total energy is given by the surface integration

ES =

∮
S0

εS dS0 , (20)

where the surface S0 denotes the surface in the reference (i.e. initial) state.
Assuming that the deformation varies linearly over the triangles, the force is then obtained via the finite

element method by performing the derivative of equation (20) with respect to the node positions x(i)

F (x(i)) = − ∂ES

∂x(i)
(21)

analytically, just like it was done for the bending forces in section 2.3. Section 2.6 is used to arrive at the
force density. The details are elaborated in references [1, 28] and will not be repeated here. We remark that
this method gives very good results when compared with the literature, as shown below in section 4.4.

4.3. Flow solvers
We now describe the two employed flow solvers: The Boundary Integral method (BIM) and the Immersed-

Boundary Lattice-Boltzmann method (LBM). As the main focus of this article is on the computation of
bending forces, we will keep the description fairly brief.

4.3.1. Boundary Integral Method
The Boundary Integral method was first applied in the context of Stokes flow by Youngren and Acrivos

in 1975 [42]. Its basic assumption is that the Reynolds number is much smaller than unity. The method then
exploits the fact that the Stokes equation is linear, and can therefore be rewritten as an integral equation
[43, 44]:

uj(x) = u∞j (x)− 1

8πµ

∮
S

3∑
i=1

4fh
i (y)Gij(y,x) dS(y) , x ∈ S , j = 1, 2, 3 . (22)

x is a point on the surface S of the capsule that is suspended in the infinite fluid domain, u is the surface
velocity and µ the dynamic viscosity of the inner and outer fluids. u∞(x) = γ̇x3êx is the imposed shear flow
with the shear rate γ̇ and the shear plane perpendicular to the z-direction. êx denotes the unit vector along
the x-axis. Finally, Gij(y,x) := δij/r + rirj/r

3 is the free-space Green’s function, whereas r := y − x and
r := |r|. Thus, given the traction jump 4fh via formula (4), this integral equation allows us to compute
the velocity at each node of the capsule’s surface. Afterwards, they are moved with the flow according to
the kinematic (no-slip) condition [44]

dx

dt
= u(x) , x ∈ S , (23)

where t denotes the time.

18



Methods A –E. The first five Methods A –E directly use the discretization of the surface S with flat triangles.
Integrals are performed by a Gaussian quadrature with 7 points per triangle [117]. Necessary quantities at
these points are obtained via linear interpolation from the nodes [43]. The polar integration rule is used
for singular triangles [118]. The ordinary differential equation (23) is solved using the Cash-Karp method
[119] which is an explicit embedded Runge-Kutta scheme of order four and five, i.e. an adaptive step size
algorithm. Its relative tolerance is fixed to 10−7 while the absolute tolerance is 10−6R. Decreasing both
by a factor of 10 did not change the results significantly. Note that the mesh remains very homogeneous
throughout the whole simulation thanks to the elastic forces acting between the nodes; no additional mesh
control scheme was necessary.

Solving equation (22) can lead to a volume drift (a mere discretization artifact). To counter it, we first
rotate the 3N -dimensional solution vector onto the hyperplane defined by the discretized version of the
no-flux condition

∮
S
u · n dS = 0, similar to the approach employed in reference [68]. This reduces the

drift but cannot eliminate it completely. Hence, after each time step we additionally rescale the object as
described in [68]. This leads to a perfect conservation of volume.

Method S. Method S uses a completely different code basis and is entirely based on Loop’s subdivision
surface algorithm (cf. section 2.5). I.e. equation (22) is computed using the smooth limit surface. Triangles,
where the Green’s function has a singularity, are treated as in reference [68]. The time evolution (23) is
solved using the trapezoidal rule, a fully implicit scheme. The time step size is fixed to γ̇4t = 10−4. No
remeshing was performed during the simulations. Furthermore, the volume drift remained below 0.005 %
(320 triangles) and 0.0002 % (> 1280 triangles) during all simulations. See reference [70] for more details.

4.3.2. Lattice-Boltzmann
The Lattice-Boltzmann method is a mesoscopic method for solving fluid problems which is based on a

discretization of space and velocities. Over the last couple of years it has become a well-established method.
We omit the details here. They can be found for example in references [45–47]. We use the D3Q19 scheme
as provided by the ESPResSo package [120, 121].

For the capsule we implemented the Immersed Boundary Method (IBM) into ESPReSo [120], following
mostly the works of Krüger [28, 48]. Besides the elastic and bending forces, we add an additional force to
minimize deviations from the initial volume as in [28], controlled by the modulus κV. The source code is
publicly available in the current development branch of ESPReSo.

To solve the dynamics, the explicit Euler scheme with the time step set to γ̇4t = 2.5×10−5 and the LBM
grid size to 13.5/R ≡ 1 are used. Contrary to BIM, periodic boundary conditions are (necessarily) employed.
The simulation box size is set to 9.5R× 9.5R in the lateral direction and 19.0R in height (changing it does
not alter the results significantly). The shear flow is realized by placing two plane parallel walls moving
in opposite directions at the top and bottom of the simulation box, implemented with the bounce-back
boundary condition. Before inserting the sphere in the center of the box, we wait until the shear flow is fully
developed. The Reynolds number Re = Rv/ν, with v the velocity of the walls and ν the kinematic viscosity,
is always smaller than 0.3. The lattice Mach number is always smaller than 0.01. Finally, the modulus of
the volume conservation force is fixed to κV = 100κS (in simulation units), leading to a maximal volume
drift of less than 0.1 % in the presented simulations.

4.4. Verification of the codes
Extensive tests were carried out to ensure the correctness of our three simulation codes. An example for

κ̂B = 0 (i.e. without any bending) can be found in figure 12 that compares the BIM code of Methods A –E
with several references found in the literature. Some of them use vastly different simulation methodologies.
Notice that the simulations remain stable despite the occurrence of buckling thanks to the small effective
bending rigidity inherent to finite element methods [3, 55, 76]. A comparison with the LBM code can be
found in figure 12a. For κ̂B 6= 0 consider figure 17. Method S can be seen to produce identical results in
figure 14.
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Figure 12: Time evolution and stationary values of the Taylor deformation parameter D for a spherical capsule without
bending resistance (κ̂B = 0) and 5120 triangles in shear flow. We checked that the inhomogeneous mesh with 3914 triangles
leads to similar results for G = 0.05 and G = 0.2. Comparison with the values of Le et al. 2011 [113] (projection method &
IBM, subdivision surface), Le et al. 2009 [75] (projection method & IBM, curved triangles), Pozrikidis 2001 [2] (BIM, curved
triangles), Tsubota 2014 [69] (BIM, flat triangles), Barthès-Biesel et al. 2010 [3] (BIM, B-Splines) and Sinha et al. 2015 [8]
(BIM, flat triangles).

All in all, the images show very good agreement, both between BIM and LBM as well as with the
literature. The results were checked to be well converged, as also shown in the next section. We remark
that the data in section 3 was produced using the code basis of the two BIM implementations.

4.5. Analysis of the different bending algorithms
4.5.1. Convergence with resolution

We now compare the performance of the different bending algorithms for the capsule with both shear
and bending resistance. As a starting point we investigate the convergence of each method with respect
to the number of triangles used to discretize the surface. Choosing G = 0.2 and κ̂B = 0.15, the results in
figure 13 are obtained.

Method A appears to be rather insensitive to the resolution which is somewhat surprising considering the
increase of its error with the number of triangles (figure 10 from page 15). However, it has serious troubles
with the inhomogeneous mesh, just like in the analytic comparison, leading to an oscillatory graph. In 3D
this is notable as a surface with slight “bumps”. On the other hand, Method C and especially S are the
fastest converging algorithms, giving similar results as the other approaches but already at 320 triangles.
This observation fits well with the average error in figure 10b which roughly remained constant. Furthermore,
this also indicates that indeed the average rather than the maximum error is the more meaningful measure
for the present setup. After all, the maximum error diverged as seen in figure 10a, but this behavior is
not reflected here. However, C obtained very high errors for the inhomogeneous triangulation even in the
average measure, although in shear flow no effect is observed (figure 13c). Method B is slightly inferior
regarding convergence compared to C, but otherwise identical. E reaches its limit at NT = 1280. The
slowest convergence is exhibited by Method D.

We finally note that very similar observations are made for G = 0.05 and κ̂B = 0.0375 and for the
inclination angles as depicted in the supplementary information. The same holds for meshes of type MT2.
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Figure 13: Taylor deformation parameter as a function of time after turning on the shear flow for BIM. G = 0.2 and κ̂B = 0.15.
We find that for almost all algorithms 320 triangles are too coarse to obtain converged results, whereas the curves for 1280
and 5120 triangles are almost indistinguishable. Method A shows significant changes for the inhomogeneous mesh with 3914
triangles. Graphs of the inclination angle and results for a different shear rate can be found in the supplementary material.

4.5.2. Direct comparison of the methods
A direct comparison of the six algorithms for a resolution of 5120 triangles using BIM is shown in

figure 14. For the small shear rate and bending modulus in figure 14a only minor differences are observed.
This shows that for small deformations the actual method plays only a secondary role, at least for sufficiently
homogeneous meshes. However, larger deviations are seen if the parameters are increased to G = 0.2 and
κ̂B = 0.15 as shown in figure 14b. Most notably, Method A deviates strongly from the other five methods.
This might be understandable from the large errors that were observed in section 3 for this algorithm.
Tsubota [69] also noticed major differences between Methods A and C. Furthermore, B –E and S coincide
almost perfectly, with deviations in the < 1 % regime. For these we observed average errors that differ by
approximately one order of magnitude (figure 10b on page 15), so this is somewhat surprising. We conclude
that all methods except A are roughly equally well suited for this setup.

To assess a possible influence of the flow solver, we also simulate the system with Lattice-Boltzmann,
restricting ourselves here to Methods A and B which directly yield the nodal forces F as required by our
LBM implementation. The results in figure 15 show very good agreement with the BIM data, proofing that
the observed differences are inherent to the bending algorithms themselves and largely independent of the
flow solver.

4.5.3. Performance considerations
An important criterion in the selection of the most suitable bending algorithm for a given problem

will be its execution speed. The approaches examined in the present work exhibit significantly different
performance characteristics. Most notably the computational complexity of Method D and S are O(N2)
while the remaining algorithms are O(N). Indeed, all methods except D and S require (mostly) only the
first ring of neighbors. We refrain here from comparing absolute execution times as varying degrees of
optimization levels (caching of quantities, parallelization, SIMD vectorization, etc.) and the hardware may
strongly influence these times. But in most cases one expects to find that one evaluation of Method D or S
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Figure 14: Direct comparison of all bending algorithms for BIM and 5120 triangles. Insets: Magnification of γ̇t ∈ [5; 10].
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Figure 15: Comparison of the LBM results with BIM for two different shear rates and bending moduli. In both cases 5120
triangles were used.
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Triangles κ̂B = 0 A B C D E

320 0.081 0.016 0.060 0.057 0.085 0.057
1280 0.064 0.0015 0.0057 0.0056 0.063 0.0060
5120 0.029 0.00014 0.00053 0.00052 0.0085 0.00056

3914 (inh.) 0.023 0.00014 0.00014 0.00040 0.013 0.0017

(a) Average γ̇4t for G = 0.05, κ̂B = 0.0375.

Triangles κ̂B = 0 A B C D E

320 0.20 0.013 0.052 0.050 0.15 0.048
1280 0.16 0.0012 0.0050 0.0049 0.078 0.0051
5120 0.13 0.00011 0.00046 0.00046 0.0076 0.00048

3914 (inh.) 0.11 0.00012 0.000023 0.00035 0.011 0.0013

(b) Average γ̇4t for G = 0.2, κ̂B = 0.15.

Table 4: Average dimensionless time step size γ̇4t for the different bending algorithms and resolutions as chosen by the Cash-
Karp algorithm for BIM. The relative tolerance of the time stepping scheme is 10−7 and the absolute tolerance is 10−6R. We
also included the data without any bending (κ̂B = 0 column). The corresponding deformations can be seen in figures 12a, 13
and the supplementary information. The average is performed over 4t in the range γ̇t ∈ [5; 10].

is the slowest (due to the inferior scaling), followed by Method E (because the fitting procedure involves
solving several small linear systems), and the remaining algorithms being the fastest.

Instead, we employ an implementation-independent indicator, namely the required time step 4t to re-
main in the stable region. In general, stiffer systems require smaller time steps if explicit integrators are used.
Since we use an explicit adaptive time stepping algorithm for the BIM implementation of Methods A –E,
the automatically chosen values for 4t can serve as an indicator for the stiffness and the overall performance
of dynamic simulations. Table 4 shows the corresponding data for two different shear rates and bending
moduli.

We first note that an increase of triangle count by a factor of four leads to a decrease of the step size by
roughly one order of magnitude for all algorithms – except for Method D. This algorithm also exhibits the
largest of all time steps. This can be attributed to its already mentioned robustness which in turn originates
from its large support (cf. sections 2.4.2 and 3.5). The smallest time step is required by Method A, being
roughly a factor of 3 smaller than for B, C and E (which all have approximately the same 4t). Moreover,
the inhomogeneous mesh takes its toll for Methods A, C and especially B, leading to step sizes even below
or equal to the one for 5120 triangles. Out of the three, C performs the best but cannot compete with E or
even D.

The general effect of decreasing step sizes with resolution is explained by Boedec et al. [58]: More triangles
imply that oscillatory modes with shorter wavelengths are resolved, but shorter wavelengths in turn mean
faster typical time scales for the bending forces. Hence, the more triangles, the smaller the shortest occurring
time scales and thus the smaller the necessary 4t.

Furthermore, considering the data without any bending (κ̂B = 0), one notices the tremendous effect
the inclusion of bending effects has on the step size and thus on the overall performance. For mediocre
resolutions, 4t is often two orders of magnitude larger than with bending. This relates to the general
stiffness of the appearing fourth derivative. A usual remedy is to work with an implicit or semi-implicit time
stepping scheme, as we did in Method S. See for example references [58, 77].

4.5.4. Comparison with the literature
Before we can compare our simulations with the literature, we comment on the constitutive bending law.

Namely, some references use the linear relation [2, 10, 20, 75]

m = κBB (24)
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for the bending moment m, where B is the Cartesian curvature tensor. Pozrikidis [2] showed that this
model is equivalent to the Helfrich law from equation (1) (also see [53]). Similar, he remarks that for zero
reference curvatures the model introduced by Zarda et al. [122] is the same, too.

Keeping this in mind, we compare the results from the literature in figures 16 and 17. The data obtained
using Method C (BIM with flat triangles) and Method S (BIM with subdivision surfaces) is also included.
Both are representative for the remaining algorithms as well as the LBM flow solver as has been shown in
figure 14, with the sole exception of Method A.
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Figure 16: Comparison of the deformation parameter for G = 0.05
and κ̂B = 0.0375 from the recent literature with Method C (BIM,
5120 flat triangles) and Method S (BIM, subdivision surface with 5120
elements). All references use the same physical parameters, except for
Pozrikidis [2] who used a Hookean elastic law. All use the Helfrich or
the equivalent linear bending model from equation (24), except Huang
et al. [71] who employs the also equivalent bending model introduced
by Zarda et al. [122] (see main text). However, the employed flow
and discretization algorithms vary greatly. We note that our LBM
simulations give the same results as Method C (fig. 15) and that both
BIM and LBM agree well without bending with the literature as shown
in section 4.4.
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Observing figure 16, we note that the values scatter a lot (. 20 %). The source is not easily identified.
The algorithm for the shear elasticity and the flow solver should have no influence, as we observe good
agreement between our BIM and LBM (fig. 15) and with the literature for κ̂B = 0 (fig. 12) for all references.
We also rule out errors in our implementation of the bending for Methods A and C: Tsubota [69] employs
virtually the same algorithms and discretizations as we do, and his results agree with ours extremely well
(figure 17). Also Method S, which uses a completely different code basis and, additionally, subdivision
surfaces, matches almost perfectly with the remaining methods except A. Furthermore, we carefully checked
that (apart from the explicitly mentioned differences) all references use the same physical laws.

Considering the agreement for κ̂B = 0, this once again emphasizes the huge difficulty inherent in the
computation of the bending forces.

5. Conclusion

To summarize, we presented six different algorithms to compute the bending forces on 3D meshes dis-
cretized with flat triangles. They are all based on the famous Canham-Helfrich constitutive law for the
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bending energy, but differ in their numerical implementation, using well-known ingredients and new devel-
opments. The methods, denoted by A–E and S, can be sorted into three different categories, depending on
the variational derivative being performed before (“force formulation”) or after (“variational formulation”)
the surface discretization. Method S is somewhat set apart from the others because it uses the finite ele-
ment method to obtain the force density. Their characteristics were collected in table 1 (page 4). In short:
Method A contains a sum over all angles between the triangles’ normal vectors, whereas Method B uses
a variant of the cotangent scheme. The same holds for Method C, except that it employs the variational
formulation and a slightly different measure for the area per node. Moreover, Method D is based on a kernel
of the heat equation, Method E fits multiple parabolas onto the surface components, and Method S uses a
subdivision scheme.

We then analyzed the behavior of the algorithms quantitatively by comparing their various components
such as the mean curvature H or the Laplace-Beltrami operator of H (essentially a fourth order derivative)
and finally the bending force itself with analytic results obtained for the typical red blood cell shape.
A concise overview of the results was given in tables 2 and 3 (page 17). Regarding the maximum error, only
Method D provides an acceptable approximation, being also the most robust on inhomogeneous meshes. No
method converged at all nodes. If the errors are averaged over the entire mesh, Methods B –E and S give
acceptable errors, but only D actually shows convergence. In general we found that the more vertices an
algorithm takes into account to compute the values at a single node, the better the overall robustness. Hence,
all Methods except D depict high sensitivity to the regularity of the mesh. No major quality differences
regarding the underlying principle of force and variational formulations (before and after discretization) were
observed.

As a physical application we considered an elastic capsule in a viscous shear flow. All approaches gave
similar results with the exception of Method A which showed significant deviations. Still this illustrates that
the behavior of some single individual points is of only minor concern for the purpose of hydrodynamics
in the small Reynolds number regime. Furthermore, a small review of the existing literature employing
different surface discretizations revealed large deviations for the hydrodynamic results, illustrating again
the tremendous difficulty inherent with computing a fourth order derivative even on higher order surface
approximations.

The results for the individual methods can be summarized as follows:

• Method A showed the largest errors of all the methods for the force density, quickly diverging in both
the maximal and sometimes even the average error measure. The hydrodynamics were noticeably
different compared to the other algorithms, especially for the inhomogeneous mesh. Hence it is very
sensitive to irregularities. Furthermore, it often required the smallest step size in order to remain in
the stable region. Even the theoretical relationship to Helfrich’s law is somewhat “blurred” because
of the shape-dependent relationship between the numerical parameter κ̃B from equation (6) and the
physical bending modulus κB. On the other hand, it is the most easily implemented method.

• Method B turned out to be similar to Method C for homogeneous meshes, but is somewhat worse for
inhomogeneous triangulations regarding errors and required step size.

• Method C depicted diverging behavior for the maximal error measure of the force density f , while the
deviations stayed roughly constant in the average measure. However, the algorithm displayed troubles
with the inhomogeneous mesh. The hydrodynamical results were very similar to Methods B –E and S,
and the required step size was comparable to B and E.

• Method D was by far the most robust, showing convergence for f on the regular meshes (albeit with a
systematic deviation in the maximal error measure) and working reasonably well on the inhomogeneous
one. It also leads to the largest step sizes. Unfortunately, one evaluation is very expensive since it
scales as O(N2) where N are the number of nodes.

• Method E is similar to C as the maximal errors for f diverged and the average remained roughly
constant. However, it handled the irregular mesh better than Methods A –C but still worse than D.
The required step size was comparable to Methods B and C.
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• Method S in general showed behavior alike to Method C. However, it provided errors that were
significantly smaller. The complexity is O(N2).

When taking the results for the systems investigated here as general guidelines, we make the following
recommendations if one wishes to implement the Helfrich law for bending forces on triangulated meshes:

• Method D is in principle the best algorithm due to its robustness and often acceptable convergence
properties. It should be chosen if performance is no issue and the resolution is sufficiently high.
Therefore it is currently the best choice for computer graphics applications. Unfortunately, it is most
likely too slow for dynamic simulations, which also often need to work with relatively coarse meshes
where it performed below average.

• Method S is a good choice for homogeneous meshes due to the comparably small errors, although
it does not provide proper convergence. It should especially be chosen over E if other parts of the
numerical algorithm (such as surface integrals) can benefit from the subdivision surface representation.
The O(N2) scaling has a small prefactor, which means that it is no bottleneck for practical resolutions.
The major error source were nodes without six neighbors, indicating that it is not well suited for more
irregular meshes.

• Method E is the second best choice if one wishes to stay with flat triangles in all parts of the numeric
implementation. The reason is that it is also relatively robust, but has worse convergence properties
than D (similar to S). Compared to e.g. algorithm C, the errors for f were always smaller. Further-
more, it has a much better computational complexity than Method D, making it suitable for larger
simulations.

• Method C is inferior to Method E and S regarding absolute errors, and hence E or S are usually
preferable. The exception might be if performance issues arise: C can be implemented more efficiently
since it does not involve solving linear systems. We remark that it provides very good results for the
shear flow setup, even for more irregular triangulations.

• Method B has similar stiffness and implementation characteristics as Method C, but performs worse
especially for the inhomogeneous mesh. Depending on the application, the only advantage compared
to C might be that it directly yields a force rather than a force density.

• Method A can be used if the goal is not to approximate the Helfrich model but to just include “some”
bending resistance, i.e. in case Method A is taken as the model itself. Another useful application would
be to prevent the mesh from buckling e.g. in shear flow simulations (i.e. for the purpose of numerical
stability [29]). In this case we suggest to use the small angle approximation from section 2.3.1 for
efficiency reasons. Note that the bending modulus must be chosen sufficiently small in order to keep
the required step size large and the physical impact as small as possible. In any other case, one of the
other algorithms should be preferred.

As a future research direction, a promising approach would be to mix the algorithms. For example, Method E
often showed the smallest errors for the mean curvature H, while Method D is the most robust. Hence it
might be worthwhile to use approach E for H and D for the Laplace-Beltrami operator of H.
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Appendix A. Derivation of the force for Method B

In this section we provide the derivation of the force F (x(l)) at some node x(l), l = 1, . . . , N via Method B
from section 2.3.2. N is the number of surface nodes. We start by writing equation (8) as

EB ≈
κB

2

N∑
i=1

Ẽ
(i)
B , (A.1)

where

Ẽ
(i)
B := 2

[∑
j(i)

(
x(i) − x(j)

)
Tij

]2
∑
j(i) l

2
ijTij

, i = 1, . . . , N , (A.2)

the sums with j(i) are sums over all neighbors j of node i, and

Tij := cotϑ
(ij)
1 + cotϑ

(ij)
2 , lij := |x(i) − x(j)| . (A.3)

The angles ϑ(ij)
1 and ϑ(ij)

2 were already defined in section 2.3.2. See figure 1 (page 5) for a sketch. We
now require an analytic expression for the force F (x(l)) from equation (5) at each node x(l), with the energy
from equation (A.1). For this, we compute the k’th component of the gradient of Ẽ(i)

B with respect to the
vertex x(l):

∂Ẽ
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B
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Tij
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(l)
k

+ l2ij
∂Tij
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(l)
k

]
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(A.4)

Here, êk is the k’th canonical unit vector and δil the Kronecker symbol. Continuing, we find

∂(l2ij)

∂x(l)
= 2(x(i) − x(j))(δil − δjl) . (A.5)

Next, we need to express Tij and therefore the angles ϑ(ij)
1,2 through the nodes’ positions. Thus, we define

χi,j,j−1 := cosϑ
(ij)
1 =

(x(i) − x(j−1)) · (x(j) − x(j−1))

li,j−1lj,j−1
and (A.6a)

χi,j,j+1 := cosϑ
(ij)
2 =

(x(i) − x(j+1)) · (x(j) − x(j+1))

li,j+1lj,j+1
, (A.6b)

where j − 1 specifies the “previous” and j + 1 the “next” node relative to node j of the ring-1 neighbors of
vertex i, as seen in figure 1. Circular enumeration is implied. We can now exploit ϑ(ij)

1,2 ∈ ]0, π[ and write

Tij =
χi,j,j−1√

1− χ2
i,j,j−1

+
χi,j,j+1√

1− χ2
i,j,j+1

. (A.7)

This leads to
∂Tij
∂x(l)

=
1(

1− χ2
i,j,j−1

)3/2 ∂χi,j,j−1

∂x(l)
+

1(
1− χ2

i,j,j+1

)3/2 ∂χi,j,j+1

∂x(l)
, (A.8)
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(a) Homogeneous mesh MT2 with 5120 triangles, obtained
by refining an icosahedron by placing new nodes in the
middle of edges and moving them out onto the sphere.

(b) Inhomogeneous mesh with 3848 triangles derived from
MT2, obtained via Rivara’s longest-edge bisection algo-
rithm.

Figure B.18: Illustrations of the typical RBC shape discretized with the MT2 approach. See figure 2 for the MT1 meshes.

whereas for m = j − 1 or m = j + 1 we find

∂χi,j,m
∂x(l)

=
1

limljm

[
(δil − δml) (x(j) − x(m)) + (δjl − δml) (x(i) − x(m))−

− ljm
lim

χijm (δil − δml) (x(i) − x(m))− lim
ljm

χijm (δjl − δml) (x(j) − x(m))
]
.

(A.9)

Substituting equation (A.9) into (A.8), and then (A.8) and (A.5) into (A.4) gives the contribution of node
x(i) (and its neighbors) to the force acting on node x(l). The total force F (x(l)) then follows from summing
over all these contributions and multiplying the result with −κB

2 . Obtaining the force density f from F was
explained in section 2.6.

Appendix B. MT2 mesh

Section 3 from the main text presented the maximal and average errors for the various Methods for the
typical RBC shape using MT1 meshes. Here we provide the same figures as in section 3 for Methods A –E
with the MT2 mesh. We highlight the major differences below.

As a start, figure B.18 shows 3D images of the homogeneous and inhomogeneous MT2 discretizations.
Compared to the MT1 versions from figure 2, the triangles around nodes with only five neighbors are
somewhat larger. Note that the inhomogeneous mesh (figure B.18b) has 3848 rather than 3914 triangles
because the edge lengths are different. Hence, the splitting order of the edges in Rivara’s algorithm is
different, and therefore also the final mesh.

The errors for the normal vector are depicted in figure B.19. We remark that the MT2 mesh reduces the
convergence rate of the maximal error for the MWA algorithm to O(h) at smaller resolutions than the MT1
mesh.

The results for the mean curvature in figure B.20 do not differ largely in the convergence rates compared
to MT1, but in the absolute value of the maximal errors. Notably, Method C is almost up to one order of
magnitude larger.

For the Laplace of the mean curvature, ∆SH, see figure B.21. Here, the maximal error for the otherwise
very robust Method D starts to increase with resolutions beyond 20480 triangles (contrary to the MT1
version, where it stays constant). The rate for the average error is reduced from O(h2) to O(h). Method E
shows qualitatively different behavior for the average error, too: Rather than decreasing with ≈ O(h2), it
remains constant beyond 5120 triangles, i.e. does not converge properly. Furthermore, the absolute values
for Method C are often more than a factor of two larger.
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(b) Average over all nodes.

Figure B.19: The maximum and average of the relative error εn of the normal vector for the MT2 mesh. The version with the
MT1 mesh can be found in figure 3, and the numerical values in the SI.
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Figure B.20: The maximum and average of the relative error εH of the mean curvature for the MT2 mesh. The version with
the MT1 mesh can be found in figure 5, and the numeric values in the SI.
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Figure B.21: The maximum and average of the relative error of the Laplace-Beltrami operator applied to H for the MT2 mesh.
The version with the MT1 mesh can be found in figure 7, and the numeric values in the SI.

We finally consider the force density in figure B.23. Of course, the same observation as for ∆SH hold
for Methods C –E. Method B behaves the same as Method C. Moreover, Method A shows divergence with
a rate of roughly O(h) for the average error, whereas in the MT1 version it stays approximately constant.
Regarding the 3D patterns in figure B.22, the most notable change occurs for Method E. Rather than regular
circles, more random patterns emerge. Inclusion of more rings, however, recovers circular patterns similar
to Method D.
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(a) Method A: As for MT1, nodes with-
out six neighbors cause troubles.

(b) Method B: Compared to C addi-
tional problematic nodes appear.

(c) Method C: The condition by Xu (cf.
section 3.3) is violated most severely at
the highlighted nodes.

(d) Method D: Very similar pattern as
for MT1, illustrating its robustness.

(e) Method E: A notably different pat-
tern when compared to MT1. But:
Inclusion of more neighbor-rings leads
again to rings (not shown).

Figure B.22: 3D illustration of the errors εf of the force density for 5120 triangles with the MT2 meshes. Note the scales of
the color bars. The MT1 meshes were displayed in figure 9.
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(b) Average over all nodes.

Figure B.23: The maximum and average of the relative error of the force density for the MT2 mesh. The version with the MT1
mesh can be found in figure 10, and the numerical values in the SI.
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