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We use Molecular Dynamics simulations to compute the spatially resolved static dielectric constant of water in
cylindrical and spherical nanopores as occuring, e.g., in protein water pockets or carbon nanotubes. For this,
we derive a linear-response formalism which correctly takes into account the dielectric boundary conditions
in the considered geometries. We find that in cylindrical confinement the axial component behaves similar
as the local density akin to what is known near planar interfaces. The radial dielectric constant shows some
oscillatory features when approaching the surface if their radius is larger than about 2nm. Most importantly,
however, the radial component exhibits pronounced oscillations at the center of the cavity. These surprising
features are traced back quantitatively to the non-local dielectric nature of bulk water.
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I. INTRODUCTION

The behavior of water’s hydrogen bond network under
nanometric confinement has become a very active and
important research field in chemical physics1–9. Such sit-
uations occur naturally, e.g., for water in protein pock-
ets or aquaporins10 but also in technological applications
such as the construction of filter membranes and pump-
ing systems using carbon nanotubes or pores11–13. In
many of these situations, water is directly affected by
electric fields originating either from close-by charges,
such as in proteins, from internal charges, such as in salt
solutions, or from external fields. It thus seems essential
to gain detailed knowledge how water locally reacts to
these fields. For this, the central question is if and how
the dielectric constant of confined water is (or is not)
different from bulk water.

In confinement, or near interfaces in general, the di-
electric constant ε is no longer a simple number, but
depends on the position relative to the interface and
in addition becomes tensorial. A lot of work has
been invested recently in attempts to understand this
anisotropic spatially dependent dielectric constant for
various geometries mainly using Molecular Dynamics
(MD) simulations. The dielectric water properties14–17
have been investigated near rigid planar interfaces18–27,
soft interfaces28–32, aqueous solutions33–43 or around
spherical solutes44. As a general trend, the spatially re-
solved dielectric constant becomes oscillatory reminiscent
of the well-known density oscillations in interfacial water.
Experimentally, current techniques are mainly based on
spectroscopy and thus far only allow a spatially averaged
determination of the dielectric properties in the interfa-
cial region45–56

The dielectric constant of water in non-planar con-
finements, however, has received less attention. Under
spherical confinement Refs. 57 and 58 defined an effec-
tive, isotropic dielectric constant which was found to be

reduced compared to the bulk fluid. In addition, Ref.
59 investigated the radial component of the anisotropic
permittivity tensor far away from both the center and
the confining wall. For the important case of cylindri-
cal confinement such as in carbon nanotubes or aqua-
porins, the axial component has recently been found to
be roughly (though not exactly) proportional to the lo-
cal density60,61. For the radial component which will be
most relevant for solvated ions, the only currently ex-
isting works did not employ the appropriate fluctuation
equation casting doubts on some of their results62–67.
Here we use Molecular Dynamics (MD) simulations to

compute the spatially resolved static dielectric constant
in axial and radial directions for cylindrical nanopores as
well as the radial component in spherical nanocavities.
The profile of the axial dielectric constant in cylindrical
confinement exhibits a very similar shape as the density
profile which is reminiscent of a planar wall22,24 in agree-
ment with refs. 60,61. For the radial dielectric constant,
the influence of the wall can only be distinguished for
relatively large tubes with radii above 2nm. However,
strong oscillations are found at the center for cylindrical
and spherical confinement. This is surprising as water
in this region would a priori be expected to be bulk-
like. Indeed, we show that these oscillations are fully
explainable if one considers the full non-local nature of
bulk water. Only for very small tubes or spheres with
radii of the order of 0.5nm the dielectric properties of
water near the center truly deviate from bulk water. We
expect that these oscillations in the radial dielectric con-
stant will have profound implications for the solvation
energy of ions in tubes or pores.
The remainder of the paper is organized as follows. In

section II we briefly introduce the Molecular Dynamics
simulation method. In section III we derive the required
linear-response equations as well as the non-local formal-
ism. Section IV presents our results and section V con-
tains concluding remarks.

http://dx.doi.org/10.1063/1.4960775
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Figure 1. Snapshot of the cylindrical system. The cyan grid
illustrates the carbon atoms.

Figure 2. Snapshot of the spherical system. The black par-
ticles enclose water molecules to ensure spherical symmetry
over the simulation time.

II. METHODS

We conduct classical MD simulations using Gromacs68
and the SPC/E water model69. In this model the oxy-
gen has the Lennard-Jones parameters σOO = 0.31656nm
and εOO = 0.65017kJ/mol and the charge qO =
−0.8476e. Hydrogen atoms possess no Lennard-Jones in-
teractions but do have a positive charge of qH = −0.5qO.
For the van- der-Waals potential we use a cutoff radius of
1 nm (switched after 0.9 nm). The time step is 2 fs and
electrostatics are calculated using the usual particle-mesh
Ewald summation.

The cylindrical cavities are carved out of a cubic lattice
of carbon atoms by simply removing all C atoms within
the cavity as illustrated in figure 1. The carbon atoms are
then frozen during the simulation and have the Lennard-
Jones interaction parameters of σCO = 0.33670nm and
εCO = 0.42469kJ/mol. We study four cylindrical pores
with radii rc = 0.5nm, 1.0nm, 2.0nm and 2.5nm. The
total system size is 8.5x8.5x4 nm for the 2.5nm pore and
9x9x5 nm for the other three. In order to determine the
amount of water molecules within the tube we first fill
the entire box with randomly arranged water molecules
at bulk density. We then remove all water molecules
whose oxygen is located at a radial position larger than
rc−rshift where rshift is introduced to avoid direct overlap
with the wall. We usually choose rshift = 0.2nm. We have
checked that varying the amount of water molecules in a
range ± 5% does not significantly influence the results.

For the spherical system we use the same setup as in
Ref. 44 without the solute in the center of the sphere as
can be seen in figure 2. A droplet of water molecules is
enclosed by a layer of frozen uncharged wall particles with
Lennard-Jones interactions parameters σeO = 0.25nm
and εeO = 0.62kJ/mol. These wall particles ensure the
spherical symmetry over the whole simulation time. The
three employed sphere radii are Rs = 0.7nm, 1.0nm and
2.0nm and the amount of contained water is determined
in the same manner as for the cylinder above.
The number of water molecules as well as the simu-

lation time for both systems are listed in tables I and
II.

rc [nm] #H2O simulation time [ns]
0.5 52 120
1.0 341 80
2.0 1708 2200
2.5 2518 5800

Table I. Number of water molecules and simulation time for
the cylindrical setup. The simulation time for the two larger
pores has to be that long to reduce the noise in the interfacial
region.

Rs [nm] #H2O simulation time [ns]
0.7 47 200
1.0 144 200
2.0 1116 360

Table II. Number of water molecules and simulation time for
the spherical setup.

III. THEORY

A. Linear response formalism in confined water

In order to derive a linear response (or fluctuation)
equation for the dielectric constant, we consider an elec-
tric field in direction α of a geometry-adapted coordinate
system in which the dielectric tensor is diagonal. For the
cylindrical geometry α can be radial (denoted r) or axial
(denoted z) while for the spherical cavity we only con-
sider the radial (denotedR) direction. In both geometries
there further exists a tangential component which is not
investigated in the present work.
We start by considering the cylindrical geometry in

which all quantities only depend on r and the definition
of the local dielectric constant εα(r) is

∆Pα(r) = (εα(r)− 1) ε0∆Eint
α (r) (1)

where ∆Pα denotes the change in the local polarization
caused by a change of the internal, or Maxwell, field
∆Eint

α and ε0 is the vacuum permittivity. Microscopi-
cally, the phase space average of the polarization when
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an external field is present is written as

〈Pα(r)〉E =
∫
dΩPα(r)e−β(H+Wα)∫
dΩe−β(H+Wα) (2)

where H is the Hamiltonian of the system in the field-
free case, and β = 1/(kBT ) with the Boltzmann constant
kB and the temperature T . Furthermore, Wα is the ad-
ditional energy due to the interaction with the electric
field. This interaction energy is given by

Wα = −
∫
V

Pα(r)Eext
α (r)dV (3)

where Eext
α (r) denotes the external field which in gen-

eral can be different from the internal (Maxwell) field.
In order to obtain a fluctuation formula one requires an
explicit relation between the internal and external fields.
This relation depends on the considered geometry and on
the direction α. From now on the two directions need to
be treated separately. For the axial direction the field is
parallel to all dielectric boundaries and thus

Eint
z (r) = Eext

z (r). (4)

At the same time the external field is independent of r
and the interaction energy reads

Wz = −Eext
z

∫
V

Pz(r)dV

= −Eext
z 2πL

∫ rc

0
rPz(r)dr (5)

with the cylinder length L and the cylinder radius rc.
Linearizing Eq. (2) for small Eext

z gives

〈Pz(r)〉E ≈ 〈Pz(r)〉0 − βE
ext
z

(〈
Pz(r)

∂Wz

∂Eext
z

〉
0

− 〈Pz(r)〉0
〈
∂Wz

∂Eext
z

〉
0

)
(6)

where 〈. . .〉0 denotes a phase space average in the absence
of the external field. Using

∆Pα(r) = 〈Pα(r)〉E − 〈Pα(r)〉0 (7)

one then equates Eq. (1) and Eq. (6) and eliminates Eext

by Eq. (4) to obtain

εz(r) = 1 + β2πL
ε0

(〈
Pz(r)

∫ rc

0
r′Pz(r′)dr′

〉
0

−〈Pz(r)〉0
〈∫ rc

0
r′Pz(r′)dr′

〉
0

)
. (8)

The axial polarization Pz(r) is calculated from the MD
simulations using the local dipole density since higher
order multipoles have been found to be negligible for the
wall-parallel dielectric component22.

For the radial direction we consider the field emanat-
ing from a line charge q/L at the center. This field is
perpendicular to the dielectric boundaries leading to

Eext
r (r) = 1

2πε0

q

rL

= Eint
r (r)εr(r). (9)

The corresponding interaction energy reads

Wr = −
∫
V

Pr(r)Eext
r (r)dV

= −
∫
V

Pr(r)
1

2πε0

q

Lr
dV

= − q

ε0

∫ rc

0
Pr(r)dr (10)

Using Eq. (10) in Eq. (2), linearizing with respect to
small q and equating with Eq. (1), one obtains the correct
fluctuation equation for the radial dielectric constant in
cylindrical geometry65

εr(r)− 1
εr(r)

= 2πβrL
ε0

(〈
Pr(r)

∫ rc

0
Pr(r′)dr′

〉
0

− 〈Pr(r)〉0
〈∫ rc

0
Pr(r′)dr′

〉
0

)
(11)

We note that erroneously assuming equality of the in-
ternal and external radial fields as has been done in sev-
eral earlier publications62–64,66,67 would lead to an equa-
tion of the form

ε∗r(r) = 1 + β2πL
ε0

(〈
Pr(r)

∫ rc

0
r′Pr(r′)dr′

〉
0

−〈Pr(r)〉0
〈∫ rc

0
r′Pr(r′)dr′

〉
0

)
. (12)

Such fluctuation formulas have no physical basis and
therefore do not lead to correct results.
For the spherical geometry the procedure is completely

analogous, except that one considers a point charge in-
stead of a line charge. The final result is

εR(R)− 1
εR(R) = 4πβR2

ε0

(〈
PR(R)

∫ Rs

0
PR(R′)dR′

〉
0

−〈PR(R)〉0

〈∫ Rs

0
PR(R′)dR′

〉
0

)
(13)

in agreement with the equation derived earlier by59.

B. Non-local formalism

In a bulk medium with non-local dielectric properties
such as water, the polarization ~P at any point ~r can be
written as

~P (~r) = ε0

∫
V

(εnl(~r, ~r′)− δ(~r − ~r′)) ~E(~r′)d~r′ (14)
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where the integral extends over all space. In a homoge-
neous medium, the non-local dielectric constant depends
only on the distance between the source and the obser-
vation point70 and can thus be written as:

εnl(~r, ~r′) = εnl(|~r − ~r′|). (15)

Due to translational invariance the non-local dielectric
constant is conveniently treated in Fourier space εnl(k)
where it can be obtained from MD simulations of bulk
water. In the following we use the data from our earlier
work44 which is similar to the data of Bopp et al.71,72.
We proceed to compute the internal electric potential

for a field emanating radially from a line or a point in
a non-local dielectric bulk medium. This allows us to
relate the non-local formalism to the locally observed εr
and εR which can be computed from MD simulations as
described in the previous paragraph. While it is possible
to treat non-local electrostatics also in finite media73,74,
one of our goals here is to show that the radial response
in a non-local bulk medium can be quantitatively related
to the local response caused by an appropriate electric
field geometry. Therefore we do not attempt to apply the
non-local formalism directly to the confined situation.

Consider a uniformly charged hollow cylinder with ra-
dius a, length L and total charge q. The charge density
on the cylinder mantle is then

ρ(r) = q

2πaLδ(r − a). (16)

The Fourier transform of an axially symmetric and z-
independent function f(r) is75

f(~k) =
∫ ∞

0
dr4π2rf(r)J0(krr)δ(kz) (17)

where J0 is the zeroth-order Bessel function. Using
Eq. (17) on Eq. (16) gives

ρ(~k) = 2πq
L
J0(kra)δ(kz). (18)

Now the cylinder is placed into water with the non-local
dielectric constant in wave-vector space given as εnl(k).
In order to compute the internal potential φint(r), we
need to solve the non-local Poisson equation70,73,76

ρ(~r) = −ε0∇ ·
∫
V

εnl (~r − ~r′)∇φint(~r′)d~r′. (19)

In Fourier space, this becomes

ε0k
2εnl(k)φint(~k) = ρ(~k) (20)

leading to

φint(~k) = 1
ε0k2

1
εnl(k)ρ(~k). (21)

The inverse Fourier transform back to real space is sim-
plified by using ϕ = 0 without loss of generality

φint(r) = 1
(2π)3

∫ ∞
0

dkrkr

∫ 2π

0
dkϕ

∫ ∞
−∞

dkzφ
int(~k)×

×eikrr cos(kϕ)eikzz (22)

Using Eq. (18) in Eq. (21) and substituting in Eq. (22)
gives

φint(r) =
∫ ∞

0

1
εnl(kr)

q

2πε0krL
J0(krr)J0(kra)dkr. (23)

Now take the limit a→ 0 for a line charge at the center
and compute the internal field

Eint
r (r) = −∇φint(r)

= q

2πε0L

∫ ∞
0

dkr
1

εnl(kr)
J1(krr). (24)

Finally, we use Eq. (9) with Eq. (24) to find

ε−1
r (r) = Eint

r (r)
Eext
r (r)

=
∫ ∞

0

1
εnl(kr)

rJ1(krr)dkr (25)

which represents a direct relation between the local di-
electric constant obtained from MD simulations under
confinement and the non-local dielectric constant of bulk
water.
For a point charge, an analogous derivation in spherical

coordinates leads to

ε−1
R (R) = 2

π
R2

∞∫
0

1
εnl(k)

(
sin(kR)
kR2 − cos(kR)

R

)
dk

(26)

IV. RESULTS

Figure 1 shows an illustration of the employed sys-
tem to investigate the dielectric constant in cylindrical
confinement. The local water density ρm(r) is plotted
in Fig. 3 (a). Due to symmetry any quantity in this
system only depends on the radial position r. For the
two larger pores with rc=2.5nm and rc=2nm we observe
pronounced density oscillations up to roughly 1nm away
from the surface. Beyond that distance the density at-
tains its constant bulk value. The density oscillations
are similar to those observed near planar hydrophobic
interfaces24. For the two smaller pores the density oscil-
lations range up to and including the central axis such
that a bulk regime is not observed.
The axial component of the dielectric tensor εz(r) com-

puted from the fluctuation equation (8) is shown in fig-
ure 3 (b). Here, the bulk regime with εz = 71 for SPC/E
water77 is attained roughly 0.5nm away from the surface.
The oscillations in εz(r) are similar to those in the mass
density ρm(r) with the same wave length and similar am-
plitudes. The only exception is the first peak which is
somewhat higher in εz(r) than in ρm(r). This behavior
is similar to the one observed near a planar interface22
and in agreement with other recent works in cylindrical
confinement60,61.
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Figure 3. (a) Density profile for the four considered cylindri-
cal nanopores. (b)+(c) Profiles of the spatially resolved axial
(b) and radial (c) dielectric constant. While the axial com-
ponent is almost proportional to the local density, the radial
component exhibits pronounced oscillations near the central
axis which are investigated further in Figure 4 below.

Figure 3 (c) shows the inverse of the radial dielectric
constant as calculated from the fluctuation equation (11).
The most prominent feature here are the strong oscilla-
tions around the center of the tube. At first sight, these
might seem to be an artifact of the simulation. However,
as will be shown below, they possess a clear physical ori-
gin which can be traced back to the non-local nature of
the dielectric constant in bulk water.

Another interesting observation is that only weak
changes to the radial dielectric constant are observed near
the pore wall. This can be appreciated by the closer view
in figure 4 (a). For the 2.5nm pore some weak and rather
noisy oscillations are seen which are reminiscent of those
observed earlier near a planar wall22,24. The oscillations
become noticably weaker for the 2nm pore indicating that
the higher curvature of the interface allows the water to
cover this curved wall more smoothly and with less dis-
ruptions of the hydrogen bond network. For the two
smallest pores the near-wall features are obscured by the
dominant features of non-local origin, cf. figure 3 (c).

Figure 4 (b) shows a close-up of the inverse radial
component around the central axis of the four investi-
gated tubes. With the exception of the smallest tube

r
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Figure 4. (a) Close-up view of the radial dielectric constant
near the walls of cylindrical pores from figure 3 (c). Only
for the largest pore with rc = 2.5nm significant oscillations
analogous to the ones observed near a planar wall are seen.
(b) Close-up view of the radial dielectric constant near the
center of the cylindrical pores from figure 3 (c). Except for
the smallest pore with rc = 0.5nm, all profiles show the same
behavior which is in quantitative agreement with a predic-
tion derived from the non-local properties of bulk water in
Eq. (25).

with rc = 0.5nm, all curves overlap. This already in-
dicates that the origin of these oscillations might be re-
lated to properties of bulk water and not to an interac-
tion with the confining wall. Indeed, the prediction for
εr(r) from Eq. (25) which is based purely on bulk proper-
ties fits the observed profiles extremely well (red curve).
These results illustrate that a spatially varying dielectric
constant observed under confinement is not necessarily
connected to a change in (interfacial) water properties,
but may simply be a direct consequence of the non-local
characteristics of bulk water. The agreement between
direct MD and the non-local prediction disappears only
for cylindrical cavities whose radius is smaller than 1nm
as shown by the blue profile for rc = 0.5nm. This ob-
servation indicates an important transition. For small
cavities all contained water must be considered ”interfa-
cial” with properties differing from bulk, while in cavities
with rc ≥ 1nm the water around the central axis is al-
ready bulk-like.
In order to bring out the general nature of this conclu-

sion, we extend our investigations to water in spherical
confinement. Figure 5 shows the spatially resolved ra-
dial component of the dielectric tensor εR(R) as obtained
from the fluctuation equation (13). Again, very good
agreement with the non-local bulk prediction of Eq. (26)
is observed for cavities with radii Rs ≥ 1nm. For smaller
cavities, the agreement disappears due to an increased
disruption of the hydrogen bond network in so strongly
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Figure 5. (a) The radial dielectric constant of water in
spherical confinement. Near the center, the oscillations are
again in agreement with a non-local bulk water prediction
from Eq. (26).

confined water.

V. CONCLUSION

Using Molecular Dynamics simulations we have com-
puted the radial and axial components of the spatially re-
solved dielectric tensor of water in cylindrical and spher-
ical confinement. The investigated pores are of a generic
hydrophobic nature mimicking water confined in car-
bon nanotubes or hydrophobic protein pockets. The ax-
ial component near the walls of cylindrical pores scales
roughly with the local density, an effect that has also
been observed in the vicinity of planar interfaces.

Our most important finding is that the radial compo-
nent features pronounced oscillations near the center of
the cylindrical or spherical confinement. These oscilla-
tions are traced back to the non-local nature of bulk wa-
ter in combination with the radial field geometry. They
are independent of the confinement itself as long as the
pore radius is not smaller than about 1nm.

The radial dielectric component is essential for the free
energy of solvated ions in water. We thus expect that
our observations may have important applications in the
study of membrane systems as used for desalination or
ion channels through cell membranes.
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