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Hydrodynamic mobility of a solid particle near a spherical elastic membrane: Axisymmetric motion
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We use the image solution technique to compute the leading order frequency-dependent self-mobility function
of a small solid particle moving perpendicular to the surface of a spherical capsule whose membrane possesses
shearing and bending rigidities. Comparing our results with those obtained earlier for an infinitely extended
planar elastic membrane, we find that membrane curvature leads to the appearance of a prominent additional
peak in the mobility. This peak is attributed to the fact that the shear resistance of the curved membrane involves
a contribution from surface-normal displacements, which is not the case for planar membranes. In the vanishing
frequency limit, the particle self-mobility near a no-slip hard sphere is recovered only when the membrane
possesses a nonvanishing resistance toward shearing. We further investigate capsule motion, finding that the
pair-mobility function is solely determined by membrane shearing properties. Our analytical predictions are
validated by fully resolved boundary integral simulations where a very good agreement is obtained.
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I. INTRODUCTION

Nanoparticles nowadays are widely used in medicine as
therapeutic drug delivery agents because of their ability to
target specific areas, including tumors and inflammation sites
[1,2]. Once they are injected into the blood circulation,
nanoparticles interact hydrodynamically with neighboring cell
membranes in a complex fashion.

In these situations, the Reynolds number is typically very
low and a complete description of particle motion is possible
via the mobility tensor, which gives a linear relation between
the particle velocity and the force applied on it. In the presence
of a boundary (interface), the mobility is anisotropic and
depends on the distance between the particle and the interface.
For fluid-solid and fluid-fluid interfaces these mobility tensors
have been studied intensively both theoretically [3–18] and
experimentally [19–35] since quite some time ago. Due to
their relevance as model systems for cell membranes, also
elastic interfaces have started to attract some attention recently.
Here, any motion of the particle causes membrane deformation
and a flow is created when the membrane relaxes back to its
undeformed state, acting back on the particle motion at a later
time. Accordingly, the system possesses a memory and the
mobility depends not only on the distance, but also on time
or, after temporal Fourier-transformation, on frequency. Par-
ticle motion nearby elastic membranes has been investigated
experimentally using optical traps [36–38], magnetic particle
actuation [39], and quasielastic light scattering [40,41], where
a significant decrease in mobility normal to the cell membrane
has been observed similar to that observed near a hard wall.
Particle mobility inside a spherical cell has further been
measured by optical microscopy [42]. Setting a particle nearby
a cell membrane has been used in interfacial microrheological
experiments as an efficient way to extract membrane’s un-
known moduli [37,43]. Theoretical investigations near elastic
interfaces have been carried out using lubrication theory
[44–46], the point-particle approximation [47–54], and have
recently been extended by including higher-order singularities
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and the hydrodynamic interaction between two particles [55].
All these works considered an infinitely large planar interface,
which might not always be an appropriate model for a curved
cell membrane. Since their solution technique is based on 2D
spatial Fourier transforms [13,56], their approach cannot be
extended to nonplanar interfaces.

In this paper, we therefore employ a different approach
based on the image solution technique to compute the
frequency-dependent mobility of a small particle moving
perpendicular to an initially spherical elastic object (which can
be a cell, a capsule, or a vesicle) whose membrane exhibits
resistance toward shearing and bending. The method has
originally been introduced by Fuentes and coworkers [57,58],
who investigated the hydrodynamic interactions between two
unequal viscous drops when the interparticle gap is of the order
of the diameter of the smaller one.

The remainder of the paper is organized as follows. In
Sec. II, we compute the flow field by expressing the solution
of the fluid motion as a multipole expansion. In Sec. III, we give
analytical expressions of the particle frequency-dependent
self-mobility in terms of infinite series, nearby idealized
membranes with shearing-only or bending-only rigidities. The
motion of the capsule is studied in Sec. IV, finding that the
pair-mobility function depends only on membrane shearing
properties. A comparison between theoretical predictions and
numerical simulations is provided in Sec. V where a very good
agreement is obtained. A conclusion summarizing our results
is offered in Sec. VI. The technical details are relegated to the
Appendices.

II. SINGULARITY SOLUTION

In this section, we derive the image solution for a point-
force acting nearby a spherical capsule of radius a. We will
use the term “capsule” to denote a general soft object including
cells or vesicles. The origin of spherical coordinates is located
at x1, the center of the capsule. An arbitrary time-dependent
point-force F is acting at x2 = Rez (see Fig. 1 for an
illustration of the system setup). The problem is thus equivalent

2470-0045/2017/95(1)/013108(16) 013108-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.013108


ABDALLAH DADDI-MOUSSA-IDER AND STEPHAN GEKLE PHYSICAL REVIEW E 95, 013108 (2017)

FIG. 1. Illustration of the system setup. A small solid spherical
particle of radius b positioned at x2 = Rez nearby a large spherical
capsule of radius a. In an axisymmetric configuration, the force is
directed along the unit vector d ≡ −ez.

to solving the forced Stokes equations,

η∇2v − ∇p + Fδ(x − x2) = 0, (1)

∇ · v = 0, (2)

for the fluid outside the capsule, and

η∇2v(i) − ∇p(i) = 0, (3)

∇ · v(i) = 0, (4)

inside. Here v and p denote the flow velocity and the
pressure outside the capsule, and the superscript (i) denote
the corresponding interior fields. For simplicity, the fluid is
assumed to have the same dynamic viscosity η everywhere.

We therefore need to solve Eqs. (1) through (4) for the
boundary conditions imposed at the membrane equilibrium
position r = a,

[vθ ] = 0, (5)

[vr ] = 0, (6)

[σθr ] = �f S
θ + �f B

θ , (7)

[σrr ] = �f S
r + �f B

r , (8)

where the notation [w] := w(r = a+) − w(r = a−) repre-
sents the jump of a given quantity w across the membrane. Here
we assume axisymmetry such that all azimuthal components

vanish. Throughout the remainder of this paper, all the lengths
will be scaled by the capsule radius a unless otherwise stated.
For convenience, the transition rules to physical quantities are
summarized in Appendix B. The nonvanishing components of
the fluid stress tensor are expressed in spherical coordinates as
[59]

σθr = η
(
vθ,r − vθ

r
+ vr,θ

r

)
, (9a)

σrr = −p + 2ηvr,r , (9b)

where comma in indices denotes a spatial partial derivative.
Note that Eqs. (5) and (6) represent the natural continuity of the
flow field across the membrane, whereas Eqs. (7) and (8) are
the discontinuity of the normal-tangential and normal-normal
components of the fluid stress tensor at the membrane. Here
�fθ and �fr are the meridional and radial traction where the
superscripts S and B stand for the shearing and bending related
parts, respectively. As derived in Appendix A, according to
the Skalak model [60] the linearized traction due to shearing
elasticity reads

�f S
θ = −2κS

3
{(1 + 2C)ur,θ + (1 + C)uθ,θθ

+ (1 + C)uθ,θ cot θ − [(1 + C) cot2 θ + C]uθ },
(10a)

�f S
r = 2κS

3
(1 + 2C)(2ur + uθ,θ + uθ cot θ ). (10b)

The traction jump due to bending resistance can be derived
from the Helfrich model [61] or by assuming a linear
constitutive relation for the bending moments [62]. For small
deformations, both formulations are equivalent [63] leading to
the traction (cf. Appendix A),

�f B
θ = κB[(1 − cot2 θ )ur,θ + ur,θθ cot θ + ur,θθθ ], (11a)

�f B
r = κB[(3 cot θ + cot3 θ )ur,θ − ur,θθ cot2 θ

+ 2ur,θθθ cot θ + ur,θθθθ ]. (11b)

Here u(θ ) = ur (θ )er + uθ (θ )eθ denotes the membrane dis-
placement vector, related to the fluid velocity by the no-slip
relation at r = 1 by

v|r=1 = du
dt

, (12)

which can thus be written in temporal Fourier space as v =
iω u evaluated at r = 1. The membrane parameters κS and κB

are the shearing and bending moduli, respectively, and C is the
Skalak parameter defined as the ratio between area expansion
modulus κA and shear modulus κS. An unscaled version of the
above equations in physical units can be obtained by applying
the rules given in Appendix B.

Our resolution approach is based on the image solution
method proposed by Fuentes et al. [57], who computed the
axisymmetric motion of two viscous drops in Stokes flow.
Accordingly, the exterior fluid velocity can be written as a
sum of two contributions,

vi = vS
i + v∗

i , (13)
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where vS
i := Gij (x − x2)Fj is the velocity field induced by a

point-force acting at x2 [cf. Eq. (14)] in an infinite medium,
i.e., in the absence of the capsule and v∗

i is the image system
required to satisfy the boundary conditions at the capsule
membrane.

Now we briefly sketch the main resolution steps. First, the
velocity vS due to the Stokeslet acting at x2 is written in terms
of spherical harmonics, which are transformed afterward into
harmonics based at x1 via the Legendre expansion. Second,
the image system solution v∗ is expressed as multipole series
at x1, which subsequently is rewritten in terms of spherical
harmonics centered at x1. Third, the solution inside the capsule
v(i) is expressed using Lamb’s solution [64] also written in
terms of spherical harmonics at x1. The last step consists of
determining the series expansion coefficients by satisfying the
boundary conditions at the membrane surface stated by Eqs. (5)
through (8).

A. Stokeslet representation

We begin with writing the Stokeslet acting at x2,

vS
i = GijFj = 1

8πη

(
Fi

1

s
+ Fj (x − x2)i∇2j

1

s

)
, (14)

where s := |x − x2|. Here ∇2j := ∂/∂x2j denotes the nabla
operator taken with respect to the singularity position x2.
Using Legendre expansion, the harmonics based at x2 can
be expanded as

1

s
=

∞∑
n=0

r2n+1

Rn+1

(d · ∇)n

n!

1

r
, (15)

where the unit vector d := (x1 − x2)/R = −ez, r = x − x1

and r := |r|. Moreover, we denote by ϕn the harmonic of
degree n, related to the Legendre polynomials of degree n by
[65]

ϕn(r,θ ) := (d · ∇)n

n!

1

r
= 1

rn+1
Pn(cos θ ). (16)

For the axisymmetric case, the force is exerted along the
unit vector d and can be written as F = F d. By making use
of the identities

∇2
1

Rn+1
= n + 1

Rn+2
d, (d · ∇2) d = 0, (17)

Eq. (14) can therefore be written as

vS = F

8πη

[ ∞∑
n=0

(n + 2)
r2n+1

Rn+1
d ϕn +

∞∑
n=0

(n + 1)
r2n+1

Rn+2
rϕn

]
.

(18)

Hence, the Stokeslet is written in terms of harmonics based
at x1. Note that the terms with d ϕn in Eq. (18) are not
independent harmonics. For their elimination, we shall use
the following recurrence property [57]:

d ϕn = 1

2n + 1
[∇ϕn−1 − r2∇ϕn+1 − (2n + 3)r ϕn+1],

(19)

leading after substitution into Eq. (18) to

vS = F

8πη

∞∑
n=1

[(
n + 3

2n + 3

r2n+3

Rn+2
− n + 1

2n − 1

r2n+1

Rn

)
∇ϕn

+
(

(n + 1)
r2n+1

Rn+2
− (n + 1)(2n + 1)

2n − 1

r2n−1

Rn

)
rϕn

]
. (20)

Note that the terms with n = 0 cancel so that the summation
starts from n = 1.

B. Image system representation

Next, we write the image system solution following a
multipole expansion approach as

v∗
i = F dj

8πη

∞∑
n=0

[
An

(d · ∇)n

n!
Gij (r) + Bn

(d · ∇)n

n!
∇2Gij (r)

]
,

(21)

where the solution form is assumed as a result of the
system axisymmetry [57] with the constants An and Bn to
be determined by the boundary conditions. By making use of
the identity

(d · ∇)n

n!
Gij (r) = δijϕn − ri

∂ϕn

∂xj

− di

∂ϕn−1

∂xj

.

together with

∇2Gij (r) = − ∂2

∂xi∂xj

2

r
,

the image solution can be written as

v∗ = − F

8πη

∞∑
n=0

{An[(n − 1)d ϕn + (n + 1)rϕn+1]

+ 2(n + 1)Bn∇ϕn+1}.
Further, the elimination of the dependent harmonics d ϕn is

readily achieved using Eq. (19). Shifting the index to start the
sum from n = 1, we finally obtain

v∗ = F

8πη

∞∑
n=1

[(
n − 2

2n − 1
r2An−1 − n

2n + 3
An+1

− 2nBn−1

)
∇ϕn − 2(n + 1)

2n − 1
An−1rϕn

]
. (22)

C. Solution inside the capsule

For the flow field inside the capsule, we use Lamb’s general
solution [66,67], which can be expressed in terms of interior
harmonics based at x1 as [57]

v(i) = F

8πη

∞∑
n=1

{
an

[
n + 3

2
r2n+3∇ϕn

+ (n + 1)(2n + 3)

2
r2n+1rϕn

]

+ bn[r2n+1∇ϕn + (2n + 1)r2n−1rϕn]

}
. (23)
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The determination of the series coefficients outside the
capsule An and Bn and inside the capsule an and bn is achieved
by applying the boundary conditions at the capsule membrane.
This will be subject of the next subsections.

D. Determination of the series coefficients

Hereafter, for the sake of completeness, we shall state
explicitly the expressions of the projected velocity components
onto the radial and tangential directions. For this aim, we make
use of the following identities for the projection onto the radial
direction,

er · ∇ϕn = −n + 1

r
ϕn, (24a)

er · rϕn = rϕn. (24b)

For the projection onto the tangential direction, we make
use of

eθ · rϕn = 0. (25)

We further define

ψn := eθ · ∇ϕn = 1

r

∂ϕn

∂θ
. (26)

From Eq. (20), the radial and tangential components of the
Stokeslet solution follow forthwith. We obtain

vS
r = F

8πη

∞∑
n=1

[
n(n + 1)

2n + 3

r2n+2

Rn+2
− n(n + 1)

2n − 1

r2n

Rn

]
ϕn, (27)

vS
θ = F

8πη

∞∑
n=1

[
n + 3

2n + 3

r2n+3

Rn+2
− n + 1

2n − 1

r2n+1

Rn

]
ψn. (28)

Similar, from Eq. (22) we obtain the components of the
image solutions as

v∗
r = F

8πη

∞∑
n=1

[
− n(n + 1)

2n − 1
rAn−1 + n(n + 1)

2n + 3

An+1

r

+2n(n + 1)
Bn−1

r

]
ϕn, (29)

v∗
θ = F

8πη

∞∑
n=1

[
n − 2

2n − 1
r2An−1 − nAn+1

2n + 3
− 2nBn−1

]
ψn.

(30)

From Eq. (23), the components of the flow field inside the
capsule read

v(i)
r = F

8πη

∞∑
n=1

[
n(n + 1)

2
r2n+2an + nr2nbn

]
ϕn, (31)

v
(i)
θ = F

8πη

∞∑
n=1

[
n + 3

2
r2n+3an + r2n+1bn

]
ψn. (32)

1. Pressure field

In order to proceed later, we need to express the pressure
field in terms of a multipole expansion. The form of the
pressure p in the exterior fluid follows from the general

solution of the axisymmetric Laplace equation in spherical
coordinates as

p = F

8π

∞∑
n=1

(Sn + Qnr
2n+1)ϕn.

Since the form of the velocity field is known from Eqs. (27)–
(30), the coefficients Sn and Qn can be related to the
coefficients of the velocity field by using Eq. (1) leading to

Sn = −2nAn−1, Qn = 2(n + 1)

Rn+2
. (33)

Inside the capsule, all harmonics of negative order that lead
to a singularity at r = 0 need to be discarded reducing the
form of the pressure to

p(i) = F

8π

∞∑
n=1

pnr
2n+1ϕn.

Using Eqs. (3), (31), and (32), we find

pn = (n + 1)(2n + 3)an. (34)

2. Continuity of velocity

After substituting Eqs. (27) through (32) into Eqs. (5) and
(6), the continuity of the tangential and radial fluid velocity
components across the membrane leads to the two following
equations

n(n + 1)

2
an + nbn = −n(n + 1)

2n − 1
An−1 + n(n + 1)

2n + 3
An+1

+ 2n(n + 1)Bn−1 + n(n + 1)

2n + 3

1

Rn+2

− n(n + 1)

2n − 1

1

Rn
, (35a)

n + 3

2
an + bn = n − 2

2n − 1
An−1 − nAn+1

2n + 3
− 2nBn−1

+ n + 3

2n + 3

1

Rn+2
− n + 1

2n − 1

1

Rn
, (35b)

which can be solved for the coefficients an and bn to obtain

an = An−1 − 2n + 1

2n + 3
An+1 − 2(2n + 1)Bn−1

+ 2

2n + 3

1

Rn+2
, (36)

bn = − (n + 1)(2n + 1)

2(2n − 1)
An−1 + n + 1

2
An+1

+ (n + 1)(2n + 3)Bn−1 − n + 1

2n − 1

1

Rn
. (37)

3. Discontinuity of the stress tensor

Expressions for An and Bn can be determined from the
discontinuity of the traction across the membrane. In order
to assess the effect of shearing and bending on particle
self-mobility, we shall consider in the following shearing and
bending effects separately.
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a. Shearing contribution. Here we consider an idealized
membrane with a shearing-only resistance, such as a typical
artificial capsule [68]. After setting �f B

r = �f B
θ = 0 in the

traction jump equations given by Eqs. (7) and (8), we readily
obtain

[vθ,r ] = −α{(1 + 2C)vr,θ + (1 + C)(vθ,θθ + vθ,θ cot θ )

−[(1 + C) cot2 θ + C]vθ }|r=1, (38a)[
p

η

]
= α(1 + 2C)vr,r |r=1, (38b)

where iα := 2κS/(3ηω) upon using the incompressibility
equation

2vr

r
+ vr,r + vθ,θ + vθ cot θ

r
= 0.

It follows immediately that [vr,r ] = 0. Furthermore, note
that [vr,θ ] = 0.

Continuing, we proceed first by substituting the expressions
of the velocity components given by Eqs. (27)–(32) into the
tangential traction jump Eq. (38a) and replacing an and bn with
their expressions given by Eqs. (36) and (37), respectively. For
the determination of the unknown coefficients, we multiply
both equation members by ψm sin θ and integrate over the
polar angle θ between 0 and π . By making use of the following
orthogonality properties∫ π

0
ψmψn sin θdθ = 2n(n + 1)

2n + 1

δmn

r2n+4
, (39)

and ∫ π

0
ψm(ψn,θθ + ψn,θ cot θ − ψn cot2 θ ) sin θdθ

= −2n(n + 1)(n2 + n − 1)

2n + 1

δmn

r2n+4
, (40)

the resulting equation reads

(2n + 1)[2(2n + 3)Bn−1 − An−1 + An+1]

= −α

{
(1 + 2C)n(n + 1)

(
An+1

2n + 3
− An−1

2n − 1
+ 2Bn−1 − 1

2n − 1

1

Rn
+ 1

2n + 3

1

Rn+2

)

+
(

n − 2

2n − 1
An−1 − n

2n + 3
An+1 − 2nBn−1 − n + 1

2n − 1

1

Rn
+ n + 3

2n + 3

1

Rn+2

)
[1 − (1 + C)n(n + 1)]

}
, (41)

for n � 1. Next, we write a similar equation for the normal traction jump Eq. (38b). After substituting the velocity and the
pressure into Eq. (38b), multiplying both members by ϕm sin θ and employing the orthogonality properties∫ π

0
ϕnϕm sin θdθ = 2

2n + 1

δmn

r2n+2
, (42)

and ∫ π

0
ϕm(ϕn,θθ + ϕn,θ cot θ ) sin θdθ = −2n(n + 1)

2n + 1

δmn

r2n+2
, (43)

we get after replacing an and bn with their corresponding expressions

−2(2n + 3)(2n + 1)(n + 1)Bn−1 + (2n2 + 7n + 3)An−1 − (2n2 + 3n + 1)An+1

= α(1 + 2C)n(n + 1)

[
− n

2n − 1
An−1 + n + 2

2n + 3
An+1 + 2(n + 2)Bn−1 + n − 1

2n − 1

1

Rn
− n + 1

2n + 3

1

Rn+2

]
, (44)

for n � 1.
Equations (41) and (44) form a closed linear system of equations, amenable to immediate resolution using the standard

substitution method. From Eq. (41), Bn−1 can be expressed in terms of An−1 and An+1. We obtain

Bn = − An+2

4n + 10
+ 1

2G

(
G′An

2n + 1
+ αG3

2n + 5

1

Rn+3
− αG1

2n + 1

1

Rn+1

)
, (45)

for n � 0, where we defined

G := (C + 1)αn3 + [(6C + 5)α + 4]n2 + [(11C + 7)α + 16]n + (6C + 3)α + 15, (46a)

G′ := α(1 + C)n3 + [(4C + 3)α + 4]n2 + [(5C + 1)α + 8]n + (1 + 2C)α + 3, (46b)

G1 := (C + 1)n3 + (3C + 4)n2 + 2(C + 2)n, (46c)

G3 := (1 + C)n3 + (5C + 6)n2 + (8C + 10)n + (4C + 2). (46d)

Next, by substituting the expression of Bn−1 into Eq. (44), we obtain the general term for An as

An = αn(n + 2)

K

(
K3

Rn+3
− K1

Rn+1

)
, (47)
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for n � 0, where

K := 8(C + 1)αn5 + [(4C + 2)α2 + 60(C + 1)α + 32]n4 + [(24C + 12)α2 + 172(C + 1)α + 192]n3 + [(44C + 22)α2

+ 234(C + 1)α + 400]n2 + [(24C + 12)α2 + (150C + 138)α + 336]n + (36C + 18)α + 90, (48a)

K1 := 4(C + 1)n4 + [(4C + 2)α + 20C + 28]n3 + [(22C + 11)α + 31C + 75]n2 + [(36C + 18)α + 15C + 93]n

+ (18C + 9)α + 45, (48b)

K3 := 4(C + 1)n4 + [(4C + 2)α + 20C + 28]n3 + [(18C + 9)α + 35C + 71]n2 + [(20C + 10)α + 25C + 71]n

+ (6C + 3)α + 6C + 21. (48c)

The general term for Bn can then be obtained by substituting the expressions of An and An+2 determined from Eq. (47) into
Eq. (45).

In particular, for α → ∞ (achieved either by taking an infinite membrane elastic modulus or by considering a vanishing
frequency) we recover the hard-sphere limit, namely

lim
α→∞ An = −

(
n + 3

2

)
1

Rn+1
+

(
n + 1

2

)
1

Rn+3
, (49a)

lim
α→∞ Bn = −1

4
(1 − R2)2 1

Rn+5
, (49b)

in agreement with the results by Kim and Karrila [59] [p. 243].
b. Bending contribution. In the following, we consider an idealized membrane with a bending-only resistance such as an

artificial vesicle. By setting �f S
r = �f S

θ = 0 in the traction jump equations given by Eqs. (7) and (8), we get

[vθ,r ] = αB[(1 − cot2 θ )vr,θ + vr,θθ cot θ + vr,θθθ ]|r=1, (50a)[
−p

η

]
= αB[(3 cot θ + cot3 θ )vr,θ − vr,θθ cot2 θ + 2vr,θθθ cot θ + vr,θθθθ ]|r=1, (50b)

where iαB := κB/(ηω). Note that the right-hand side of Eq. (50b) stands for the tangential biharmonic operator [69] applied to
the velocity radial component vr .

We then substitute the expressions of the velocity components given by Eqs. (27)–(32) into the tangential traction jump
Eq. (50a) and replace an and bn with their expressions given, respectively, by Eqs. (36) and (37). After multiplying both members
by ψm sin θ , preforming the integration between 0 and π , and making use of the orthogonality identities Eqs. (39) and (40)
together with Eq. (26), we obtain

(2n + 1)[2(2n + 3)Bn−1 − An−1 + An+1]

= αB

(
An+1

2n + 3
− An−1

2n − 1
+ 2Bn−1 − 1

2n − 1

1

Rn
+ 1

2n + 3

1

Rn+2

)
n(n + 1)(−n2 − n + 2), (51)

for n � 1.
Next, after substitution in the normal traction jump Eq. (50b), multiplying both members by ϕm sin θ and using Eq. (42)

together with the orthogonality identity

∫ π

0
ϕm[(3 cot θ + cot3 θ )ϕn,θ − ϕn,θθ cot2 θ + 2ϕn,θθθ cot θ + ϕn,θθθθ ] sin θdθ = 2n(n − 1)(n + 1)(n + 2)

2n + 1

δmn

r2n+2
,

we get after replacing an and bn with their corresponding expressions

−2(2n + 3)(2n + 1)(n + 1)Bn−1 + (2n2 + 7n + 3)An−1 − (2n2 + 3n + 1)An+1

= αB

(
An+1

2n + 3
− An−1

2n − 1
+ 2Bn−1 − 1

2n − 1

1

Rn
+ 1

2n + 3

1

Rn+2

)
(n − 1)n2(n + 1)2(n + 2), (52)

for n � 1.
From Eq. (51), Bn−1 can straightforwardly be expressed in terms of An−1 and An+1. We obtain

Bn = − An+2

4n + 10
+ 1

S

[
S ′An

2n + 1
+ αBn(n + 1)(n + 2)(n + 3)

(
1

2n + 1

1

Rn+1
− 1

2n + 5

1

Rn+3

)]
, (53)
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for n � 0, where we defined

S := 2[αBn4 + 6αBn3 + (11αB + 4)n2 + (6αB + 16)n + 15], (54a)

S ′ := S/2 − 8n − 12. (54b)

After plugging the expression of Bn−1 into Eq. (52), we get the general term of An as

An = αBn2(n + 1)(n + 3)(n + 2)2

W

(
2n + 1

Rn+3
− 2n + 5

Rn+1

)
, (55)

for n � 0, where

W := 4αBn6 + 36αBn5 + 118αBn4 + (168αB + 16)n3 + (94αB + 72)n2 + (12αB + 92)n + 30.

The general term for Bn can be obtained by substituting An and An+2 as computed from Eq. (55) into Eq. (53). Interestingly,
by taking αB to infinity, An and Bn do not tend to the hard-sphere limits as it has been shown to be the case for a shearing-only
membrane. In this case we rather obtain

lim
αB→∞ An = n(n + 2)

2(2n2 + 6n + 1)

(
2n + 1

Rn+3
− 2n + 5

Rn+1

)
, (56a)

lim
αB→∞ Bn = 1

4

[
− n2 + 2n − 2

2n2 + 6n + 1
− (n + 2)(n + 4)

2n2 + 14n + 21

1

R4
+ 2n4 + 18n3 + 49n2 + 42n + 3

(2n2 + 6n + 1)(2n2 + 14n + 21)

2

R2

]
1

Rn+1
. (56b)

A similar resolution approach can be adopted for the
determination of the series coefficients when the membrane
is simultaneously endowed with both shearing and bending
rigidities. Analytical expression can be obtained by computer
algebra software, but they are not included here due to their
complexity and lengthiness. We note that the shearing and
bending contributions to the particle mobility do not superpose
linearly, which is in contrast to a planar membrane [52]
but similar to what has been observed between two planar
membranes [53].

III. PARTICLE SELF-MOBILITY

In this section, we compute the correction to the particle
self-mobility in the point-particle framework. Here we assume
no net force on the capsule and an external force F2 on the
solid particle. As shown in Appendix C, for finite membrane
shearing modulus, the capsule is, in fact, force free.

The zeroth-order solution for the particle velocity is given
by the Stokes law as V (0)

2 = μ0 F2, where μ0 := 1/(6πηb)
is the usual bulk mobility. The first-order correction to
the particle self-mobility �μ is obtained by evaluating the
reflected flow field at the particle position such that

v∗|x=x2 = �μF2. (57)

Since the force points along the axis of symmetry of the system,
the mobility correction is a simple scalar and not a tensor
as it would be for an arbitrary direction of the force. In the
following, we shall make use of the following identities:

(d · ∇)n

n!
G(r)

∣∣∣∣
x=x2

F2 = 2

Rn+1
F2, (58a)

(d · ∇)n

n!
∇2G(r)

∣∣∣∣
x=x2

F2 = −2(n + 1)(n + 2)

Rn+3
F2, (58b)

to finally obtain

�μ

μ0
= 3b

4

∞∑
n=0

2[An − (n + 1)(n + 2)ξ 2Bn]ξn+1, (59)

wherein ξ := 1/R ∈ [0,1). This is the central result of our
work. We recall that the unscaled form for an arbitrary capsule
radius a can be obtained from Eq. (59) by the replacement
rules in Appendix B. The number of terms to be included
before the series is truncated can be estimated for a desired
precision as detailed in Appendix D. Due to the point-particle
approximation, the particle radius only enters upon rescaling
the particle self-mobility correction by the bulk mobility μ0.

A. Shearing contribution

For a membrane exhibiting a shearing-only resistance, the
particle self-mobility correction can be computed by plugging
the expressions of Bn and An as stated, respectively, by
Eqs. (45) and (47) into Eq. (59). By taking the limit when
α → ∞ we recover the rigid sphere limit,

�μS,∞
μ0

:= lim
α→∞

�μS

μ0
= −ξ 3(15 − 7ξ 2 + ξ 4)

4(1 − ξ 2)

b

R
, (60)

in agreement with the result by Ekiel-Jeżewska and Felderhof
[[70], Eq. (2.26)]. For an infinite membrane radius, we obtain

�μS,∞
μ0

= −9

8

b

h
, (61)

where h := R − 1 being the distance from the center of the
solid particle to the closest point on the capsule surface. We
thus recover the well-known result for a planar rigid wall as
first calculated by Lorentz about one century ago [3].

We define the characteristic frequency for shearing as
β := 6Bηωh/κS with B := 2/(1 + C). In Fig. 2 we plot the
variations of the scaled self-mobility correction for a shearing-
only membrane versus β upon varying the particle radius b
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FIG. 2. Scaled particle self-mobility correction versus β for
various values of b for a shearing-only membrane. The real and
imaginary parts are shown as dashed and solid lines, respectively.
Horizontal dashed lines represent the hard-sphere limit as given by
Eq. (60). The curve in gray corresponds to the self-mobility correction
for a planar membrane as given by Eq. (62). Here we set the solid
particle at h = 2b.

while keeping the distance from the membrane h = 2b and
setting the Skalak parameter C = 1. We observe that the real
part of the mobility correction is a monotonically increasing
function of frequency and the imaginary part exhibits the
typical peak structure, which is a signature of the memory
effect induced by the elastic nature of the membrane. In the
vanishing frequency limit, the correction is identical to that
near a hard sphere with stick boundary conditions, given by
Eq. (60).

For sufficiently small values of b (or equivalently for larger
capsule radii), we observe that in the high-frequency regime for
which β � 1, both the real and imaginary parts of the mobility
correction follow faithfully the evolution of those predicted
for a planar membrane, which is [52]

�μS(β)

μ0
= − 9

16

b

h
eiβ E4(iβ). (62)

The peak position around β ∼ 1 can be estimated by a simple
balance between membrane elasticity and fluid viscosity as
ω ∼ κS/(ηh). A strong departure is, however, observed in
the low-frequency regime where a second peak of more pro-
nounced amplitude occurs in the imaginary part. This second
peak is the most prominent signature, which distinguishes the
spherical membrane from the planar case. The peak height
remains typically constant for a large range of values of b

because the mobility correction has been rescaled by the bulk
mobility.

We attribute the two peaks in Fig. 2 to in-plane deformations
(uθ ) and surface-normal deformations (ur ), respectively. The
radius-independent peak around β ∼ 1 corresponds to in-plane
deformations uθ , which are present in a similar way for the
planar membrane thus explaining the agreement with Eq. (62).
The larger and radius-dependent peak corresponds to surface-
normal deformations, which contribute to the traction jump
even for a shear-only membrane as can be seen in Eq. (10).
This contribution is due to the membrane curvature: in the
planar case, surface-normal deformations do not contribute

10−8

10−6

10−4

10−2

100

10−3 10−2 10−1

β
pe

ak
h b

2

b

h = 2b
h = 4b
h = 6b
h = 8b

2b2

FIG. 3. Log-log plot of the rescaled peak-frequency versus
particle radius for different particle-to-membrane distance h.

to the traction jump associated with shear at first order (cf.
Eq. (A20) of Ref. [52]), and therefore this peak is not observed
for the planar membrane. Indeed, upon increasing the capsule
radius (decreasing b), the second peak gradually shifts towards
lower frequencies and eventually disappears for b → 0.

In Fig. 3, we plot the variations of the rescaled peak
frequency occurring in the imaginary part of the particle
self-mobility versus particle radius b at different values of h.
For sufficiently small particles (b < 0.05), the peak frequency
shows a quadratic increase with particle radius b. By rescaling
the peak frequencies by (h/b)2, a master curve is obtained and
the peak frequency position can accurately be computed from
the relation βpeak = 2h2.

B. Bending contribution

For a bending-only membrane, the mobility correction is
readily obtained after plugging the series coefficients Bn and
An, respectively, given by Eqs. (53) and (55) into Eq. (59). In
particular, by taking αB → ∞, the leading-order self-mobility
correction can conveniently be approximated by

�μB,∞
μ0

:= lim
αB→∞

�μB

μ0
	 − 7ξ 3

4(1 − ξ 2)

[
1 + ξ 2

5
− 9ξ 4

70

]
b

R
,

(63)

which, for an infinite radius, reads

�μB,∞
μ0

= −15

16

b

h
, (64)

corresponding to the vanishing frequency limit for a planar
membrane with bending-only as calculated in earlier work
[52]. Note that this limit is the same as that for a flat fluid-fluid
interface separating two immiscible liquids having the same
dynamic viscosity [7].

We define the characteristic frequency for bending as βB :=
2h(4ηω/κB)1/3. In Fig. 4, we present the particle self-mobility
correction nearby a membrane exhibiting a bending-only resis-
tance versus βB. Unlike a membrane with shearing resistance
only, the particle mobility correction nearby a bending-only
membrane does not exhibit a second peak of pronounced
amplitude. The single peak observed is the characteristic peak
for bending, which occurs at β3

B ∼ 1 and is largely independent
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FIG. 4. Scaled self-mobility correction versus βB for various
values of the capsule radius, for a bending-only membrane. The
dashed and continuous lines represent the real and imaginary parts
respectively. The horizontal dashed lines are the vanishing frequency
limits as approximated be Eq. (63). The curve in gray is the solution
for a planar membrane given by Eq. (65). Here we take h = 2b.

of the radius. In fact, this peak position can be estimated by a
balance between fluid viscosity and membrane bending such
that ω ∼ κB/(ηh3). As can be seen from Eq. (11), the traction
jump for a bending-only membrane involves only the radial
deformation which explain the absence of a second peak in
contrast to the two-peak structure seen in the shearing-only
case.

As already pointed out in Sec. II, the hard-sphere solution
is not recovered for a bending-only membrane in the vanishing
frequency limit. A similar trend has been observed in earlier
work for planar membranes where bending alone is not
sufficient to recover the hard-wall limit [52]. This feature is
again justified by the fact that the traction jumps due to bending
in Eq. (11) do not depend on the tangential displacement uθ .
Even when considering an infinite bending modulus κB, the
tangential component of the membrane displacement is thus
still completely free. This behavior cannot represent the hard
sphere where both radial and tangential displacements are
restricted.

We further remark that for smaller values of b, the evolution
of both the real and imaginary part is found to be in excellent
agreement with the solution for a planar membrane [52] in the
whole range of frequencies:

�μB(βB)

μ0
= 3iβB

8

b

h

[(
β2

B

12
+ iβB

6
+ 1

6

)
φ+

+
√

3

6
(βB + i)φ− + 5i

2βB

+
(

β2
B

12
− iβB

3
− 1

3

)
e−iβB E1(−iβB)

]
, (65)

with

φ± = e−izB E1(−izB) ± e−izB E1(−izB), (66)

where zB := βBe2iπ/3.
We therefore conclude that for large capsules, the mobility

correction for a bending-only membrane can be appropriately

estimated from the planar membrane limit. For moderate
capsule radii, the planar membrane prediction gives a reason-
able agreement only in the high frequency regime for which
βB � 1.

C. Shearing-bending coupling

Unlike for a single planar membrane, shearing and bending
are intrinsically coupled for a spherical membrane and the
particle mobility near a membrane exhibiting shearing and
bending resistance cannot be obtained by linear superposition
as for a planar membrane [52]. A similar coupling is also
observed for the mobility of a particle between two parallel
planar membranes [53] as well as for thermal fluctuations
of two closely coupled [71] or “warped” [72] membranes.
Therefore, the solution requires us to simultaneously consider
shearing and bending in the traction jump equations. In order to
investigate this coupling effect, we define the reduced bending
modulus as EB := κB/(κSh

2), a parameter that quantifies the
relative contributions of shearing and bending.

In Fig. 5(a) we show the scaled self-mobility correction
versus β nearby a membrane with both shearing and bending
resistances upon varying b. We observe that in the high-
frequency regime, i.e., for β > 1, the mobility correction fol-
lows faithfully the evolution predicted for a planar membrane.
For lower values of b, the planar membrane solution provides
a very good estimation even deeper into the low-frequency
regime. Here, we take h = 2b and a reduced bending modulus
EB = 1, for which shearing and bending manifest themselves
equally.

In Fig. 5(b), we show the mobility correction versus β

for a membrane with both rigidities upon varying the reduced
bending modulus EB while keeping b = 1/10 and h = 2b. For
EB = 0 corresponding to a shearing-only membrane, a low-
frequency peak as in Fig. 2 is observed. For EB ≈ 1 and above,
this peak quickly disappears, which confirms our hypothesis
that it is due to radial deformations as reasoned above: In
the case of large bending resistance these deformations are
suppressed and therefore the peak height diminishes and
eventually disappears.

The imaginary part exhibits an additional peak of typically
constant height that is shifted progressively toward the higher
frequency domain for increasing EB. From the definitions of
β and βB, it can be seen that

β3
B = 16

3BEB
β. (67)

Therefore, the peak observed at β ∼ 1 is attributed to shearing,
whereas the high-frequency peak is attributed to bending
because β ∼ EB when β3

B ∼ 1. Particularly, for EB = 1, the
position of the two peaks coincides as β ∼ β3

B for which
shearing and bending have equal contribution.

IV. CAPSULE MOTION AND DEFORMATION

Next, we examine the capsule motion induced by the nearby
moving solid particle. For this aim, we define the pair-mobility
function μ12 as the ratio between the centroid velocity of the
capsule V1 and the force F2 applied on the solid particle, i.e.,
V1 = μ12F2. The net translational velocity of the capsule can
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FIG. 5. (a) Scaled particle self-mobility correction versus β for
various values of the particle radius b for a membrane endowed
with both shearing and bending rigidities. The real and imaginary
parts are shown as dashed and solid lines, respectively. Horizontal
dashed lines represent the hard-sphere limit as given by Eq. (60). The
curve in gray corresponds to the self-mobility correction for a planar
membrane as obtained by linear superposition of Eqs. (62) and (65).
Here we set the solid particle at h = 2b and we take a reduced bending
modulus EB = 1. (b) Scaled self-mobility correction versus β for
various values of the reduced bending modulus. The horizontal black
dashed line is the hard-sphere limit given by Eq. (60), whereas the gray
dashed line is the infinite bending rigidity limit for a bending-only
membrane as given by Eq. (63). Here we take b = 1/10 and h = 2b.

readily be computed by volume integration of the z component
of the fluid velocity inside the capsule [73],

V1(ω) = 2π

�

∫ π

0

∫ 1

0
v(i)

z (r,θ,ω) r2 sin θ drdθ, (68)

where � := 4π/3 is the volume of the undeformed capsule
and v(i)

z = v(i)
r cos θ − v

(i)
θ sin θ . Analytical expressions for v(i)

r

and v
(i)
θ are given by Eqs. (31) and (32), respectively. After

computation, only the terms with n = 1 of the series remain.
The frequency-dependent pair-mobility reads

μ12 = − 1

8πη
(a1 + b1), (69)

which can be simplified to obtain

6πημ12 = 3

2
ξ − ξ 3

2

3 + (1 + 2C)α

5 + (1 + 2C)α
. (70)

The leading order pair-mobility correction is therefore
expressed as a Debye-type model with a relaxation time given
by

τ = 15

2(1 + 2C)

η

κS
. (71)

Interestingly, the pair-mobility μ12 depends only on the
shear resistance of the membrane, but not on membrane
bending properties. In the limiting cases, we recover two
known results. First, for an infinite membrane shearing
modulus, we get the leading-order pair-mobility between two
unequal hard-spheres,

lim
α→∞ 6πημ12 = 3

2
ξ − ξ 3

2
. (72)

Second, for a vanishing membrane shearing modulus, we
obtain the leading-order pair-mobility between a solid particle
and a viscous drop,

lim
α→0

6πημ12 = 3

2
ξ − 3

10
ξ 3, (73)

both of which are in agreement with those reported by Fuentes
et al. [[57], Eq. (12)].

Membrane deformation

In this subsection, we compute the capsule deformation
resulting from an arbitrary time-dependent point-force F act-
ing nearby the spherical capsule. The membrane displacement
field is related to the fluid velocity at r = 1 via the no-slip
equation given by Eq. (12). In order to proceed, we define the
frequency-dependent reaction tensor ψij as

ui(θ,ω) = ψij (θ,ω)Fj (ω). (74)

By setting a harmonic driving force Fi(t) = Kie
iω0t , which

in the frequency domain reads Fi(ω) = 2πKiδ(ω − ω0), the
membrane time-dependent displacement can readily be eval-
uated by inverse Fourier transform of Eq. (74) to obtain

ui(θ,t) = ψij (θ,ω0)Kje
iω0t . (75)

In an axisymmetric situation, we are interested in the
components ψrz and ψθz of the reaction tensor, giving access
to the displacements ur and uθ under the action of a point force
directed along the z direction. By making use of Eqs. (31) and
(32), we immediately obtain

ψrz = − 1

8πηiω

∞∑
n=1

[
n(n + 1)

2
an + nbn

]
Pn(cos θ ), (76a)

ψθz = − 1

8πηiω

∞∑
n=1

[
n + 3

2
an + bn

]
dPn(cos θ )

dθ
. (76b)

The first derivative of Legendre polynomial can be computed
using the recurrence formula [65]

dPn(cos θ )

dθ
= − n

sin θ
[Pn−1(cos θ ) − cos θPn(cos θ )].
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V. COMPARISON WITH BOUNDARY
INTEGRAL SIMULATIONS

In order to assess the appropriateness of the point par-
ticle approximation employed throughout this work, we
shall compare our analytical predictions with fully resolved
boundary integral simulations of truly extended particles. The
simulations are based on the completed double-layer boundary
integral equation method (CDLBIEM) [74–76], which allows
for the efficient simulation of deformable as well as truly solid
objects. Details on the algorithm and its implementation have
been reported elsewhere; see, for instance, Refs. [53,77,78].

For the determination of the solid particle self-mobility, a
harmonic oscillating force Keiω0t is applied at the surface of
the particle along the z direction. After a transient evolution,
the particle begins to oscillate with the same frequency ω0

as V2e
i(ω0t+δ2). The velocity amplitude V2 and phase shift δ2

are accurately determined by fitting the numerically recorded
velocity using the trust region method [79]. The frequency-
dependent self-mobility of the solid particle is then computed
as μ = (V2/K)eiδ2 . Under the effect of the oscillating force,
the volume centroid of the capsule undergoes an oscillatory
motion along the z direction as X1e

i(ω0t+δ1). The capsule pair-
mobility is therefore computed as μ12 = (iω0X1/K)eiδ1 .

In Fig. 6(a), we present the scaled self-mobility correction
versus the scaled frequency β as given theoretically by
Eq. (59). The solid particle has a radius b = 1/10 positioned at
h = 2b nearby a large capsule. For the simulations parameters,
we take C = 1 and EB = 2/3. Results for shearing-only and
bending-only membrane are also shown in green and red
respectively. We observe that in the low-frequency regime,
the near hard-sphere mobility correction is approached only
if the membrane exhibits a resistance towards shearing, in
agreement with theoretical calculations.

In Fig. 6(b), we show the scaled self-mobility correction for
C = 1 and C = 100. A very large C is typical for vesicles or
red blood cells [80–82], where the surface area remains almost
unchanged during deformation. We observe that the effect
of area expansion is more pronounced in the high-frequency
regime. A very good agreement is obtained between analytical
predictions and boundary integral simulations over the whole
range of applied frequencies.

We now turn to the motion of the capsule. In Fig. 7, we show
the correction to the scaled pair-mobility versus the scaled
frequency β. The correction for a shearing-only membrane is
almost indistinguishable from that of a membrane with both
shearing and bending rigidities. In the low-frequency regime
for which β  1, the pair-mobility correction approaches
that near a hard-sphere given by Eq. (72). On the other
hand, in the high-frequency regime for which β � 1, the
correction approaches that near a viscous drop as given by
Eq. (73). Moreover, the correction nearby a bending-only
membrane remains typically unchanged over the whole range
of frequencies and equals that for a viscous drop. Indeed, these
observations are in complete agreement with the analytical
prediction stated by Eq. (70).

In Fig. 8, we show the membrane scaled radial and
meridional displacements versus the polar angle θ at quar-
ter period for tω0 = π/2. The natural scale for membrane
deformation is Kz/κS the ratio between the forcing amplitude
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FIG. 6. (a) Scaled frequency-dependent particle mobility correc-
tion versus the scaled frequency β nearby a membrane endowed with
only shearing (green/light gray), only bending (red/dark gray) and
both rigidities (black). The small particle has a radius b = 1/10 set a
distance h = 2b. Here we take C = 1 and a reduced bending modulus
EB = 2/3. The theoretical predictions are shown as dashed lines for
the real parts and as solid lines for the imaginary parts. Symbols
refer to boundary integral simulations where the real and imaginary
parts are shown as squares and circles, respectively. The horizontal
dashed lines are the vanishing frequency limits given by Eqs. (60)
and (63). (b) Scaled frequency-dependent mobility correction versus
ηω/κS nearby a membrane endowed with both shearing and bending
rigidities for C = 1 (black) and C = 100 (blue/dark gray) for the
same set of parameters in panel (a).

Kz and the shearing resistance κS. We observe that the radial
displacement ur is a monotonically decreasing function of θ

and eventually changes sign at some intermediate angle. On
the other hand, the meridional displacement uθ is negatively
valued and vanishes at θ = 0 and θ = π due to the system
axial symmetry, suggesting the existence of an extremum in
between. Moreover, the maximum displacement reached in ur

is found to be about three times larger in comparison to that
reached in uθ .

By examining the displacement at various forcing frequen-
cies, we observe that larger frequencies induce remarkably
smaller deformation since the capsule membrane does not have
enough time to respond to the fast oscillating particle. In typical
situations, the forces acting by optical tweezers on suspended
particles are of the order of 1 pN [83] and the capsule has
a radius 10−6 m and a shearing modulus 5 × 10−6 N/m [84].
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are shown as squares and circles for the real and imaginary parts,
respectively. The horizontal dashed line is the vanishing frequency
limit predicted by Eq. (72), where the dotted line is the limit
corresponding to vanishing membrane moduli as given by Eq. (73).
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FIG. 8. Scaled radial (a) and meridional (b) membrane displace-
ment versus the polar angle θ for three scaled forcing frequencies
β at quarter period for tω0 = π/2. Solid lines are the theoretical
predictions obtained from Eqs. (76a) and (76b) and symbols are
boundary integral simulations.

For a forcing frequency β = 4, the membrane undergoes a
maximal deformation of about 1% of its undeformed radius.
Therefore, deformations are significantly small and deviations
from sphericity are negligible. The analytical predictions based
on the linear theory of small deformation are found to be
in a good agreement with simulations. A small deviation is
observed notably for uθ at small angles, which is possibly due
to a finite-size effect since the analytical predictions are based
on the point-particle approximation, whereas simulations treat
truly extended particles of finite size.

VI. CONCLUSION

Using the image solution technique, we have computed the
leading-order hydrodynamic self-mobility of a solid spherical
particle axisymmetrically moving nearby a large deformable
capsule whose membrane exhibits resistance toward shearing
and bending. The mobility corrections are expressed in
terms of infinite but convergent series whose coefficients are
frequency-dependent complex quantities. We have shown that
in the vanishing frequency limit, the particle self-mobility near
a hard sphere is recovered only when the membrane possesses
a resistance toward shearing. For a large membrane radius, our
results perfectly overlap with those obtained earlier for a planar
membrane in the high-frequency regime. The major qualitative
difference between the planar and the spherical membrane is
the existence of a second, low-frequency peak in the imaginary
part (and a corresponding dispersion step in the real part)
caused by shear resistance. The appearance of two peaks can be
understood by the simple fact that the membrane traction jump
stemming from shear resistance contains contributions from
normal (radial) as well as in-plane (tangential) displacements.
For a planar membrane, only in-plane displacements contribute
to shear resistance, which explains why the observed peak
disappears at large radii. For a bending-only membrane,
curvature effects are much less pronounced and the planar
membrane gives a fairly good approximation even deep in the
low-frequency regime.

Considering the capsule motion, we have found that
the pair-mobility function depends solely on the membrane
shearing properties and it can be well described by a Debye-
like model with a single relaxation time. The pair-mobility
function for a bending-only membrane is therefore frequency-
independent and it is identical to that for a viscous drop.
We have further found that the point particle approximation
despite its simplicity leads to a very good agreement with the
numerical simulations preformed for a truly extended particle
using a completed double-layer boundary integral method.
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APPENDIX A: MEMBRANE MECHANICS

In this Appendix, we shall derive equations in spherical
coordinates for the traction jump across a membrane endowed
with shearing and bending rigidities. Here we follow the
convention in which the symbols for the radial, azimuthal, and
polar angle coordinates are taken as r , φ, and θ , respectively,
with the corresponding orthonormal basis vectors er , eφ , and
eθ . Similar, all the lengths will be scaled by capsule radius a.
We denote by a = er the position vector of the points located at
the undisplaced membrane. After axisymmetric deformation,
the vector position reads

r = (1 + ur )er + uθ eθ , (A1)

where ur and uθ denote the radial and meridional displace-
ments. In the following, capital Roman letters shall be reserved
for the undeformed state while small letters for the deformed.
The spherical membrane can be defined by the covariant base
vectors g1 := r ,θ and g2 := r ,φ . The unit normal vector n is
defined in such a way to form a direct trihedron with g1 and
g2. The covariant base vectors are

g1 = (ur,θ − uθ )er + (1 + ur + uθ,θ )eθ , (A2a)

g2 = [(1 + ur ) sin θ + uθ cos θ ]eφ, (A2b)

and the unit normal vector at leading order in deformation
reads

n = er − (ur,θ − uθ )eθ . (A3)

Note that g1 and g2 have (scaled) length dimension while n
is dimensionless. In the deformed state, the components of the
metric tensor are defined by the scalar product gαβ = gα · gβ .
The contravariant tensor gαβ , defined as the inverse of the
metric tensor, is linearized as

gαβ =
(

1 − 2εθθ 0

0 1−2εφφ

sin2 θ

)
, (A4)

where εαβ represents the components of the in-plane strain
tensor written in spherical coordinates as [85]

εθθ = ur + uθ,θ , (A5a)

εφφ = ur + uθ cot θ. (A5b)

The contravariant tensor in the undeformed state Gαβ can
immediately be obtained by considering a vanishing strain
tensor in Eq. (A4).

1. Shearing contribution

In this subsection, we shall derive the traction jump
equations across a membrane endowed with an in-plane
shearing resistance. The two invariants of the strain tensor
are given by Green and Adkins as [86,87]

I1 = Gαβgαβ − 2, (A6a)

I2 = det Gαβ det gαβ − 1. (A6b)

The contravariant components of the stress tensor ταβ

can then be obtained provided knowledge of the membrane

constitutive elastic law, whose areal strain energy functional
is W (I1,I2), such that [88]

ταβ = 2

JS

∂W

∂I1
Gαβ + 2JS

∂W

∂I2
gαβ, (A7)

where JS := √
1 + I2 is the Jacobian determinant, prescribing

the ratio between deformed and undeformed local areas. In the
linear theory of elasticity, JS 	 1 + e, where e := εθθ + εφφ

being the trace of the in-plane strain tensor, commonly know as
the dilatation. In this work, we use the Skalak model to describe
the elastic properties of the capsule membrane, whose areal
strain energy reads [84,89]

W (I1,I2) = κS

12

(
I 2

1 + 2I1 − 2I2 + CI 2
2

)
, (A8)

where C := κA/κS. Note that for C = 1, the Skalak model is
equivalent to the neo-Hookean model for small deformations
[88]. After plugging Eq. (A8) into Eq. (A7), the linearized
in-plane stress tensor reads

ταβ = 2κS

3

(
εθθ + Ce 0

0 εφφ+Ce

sin2 θ

)
. (A9)

The membrane equilibrium equations balancing the elastic
and external forces read

∇αταβ + �f β = 0, (A10a)

ταβbαβ + �f n = 0, (A10b)

where � f = �f β gβ + �f nn is the traction jump across the
membrane and ∇α denotes the covariant derivative defined for
a second-rank tensor as

∇αταβ = ταβ
,α + �α

αητ
ηβ + �β

αητ
αη, (A11)

and �λ
αβ are the Christoffel symbols of the second kind defined

as [90] [ch. 2]

�λ
αβ = 1

2gλη(gαη,β + gηβ,α − gαβ,η). (A12)

Continuing, bαβ is the second fundamental form (curvature
tensor) defined as

bαβ = gα,β · n. (A13)

Note that at zeroth order, the nonvanishing components
of the Christoffel symbols are �

φ
φθ = �

φ
θφ = cot θ and �θ

φφ =
− sin θ cos θ . After some algebra, we find that the meridional
tangential traction jump across the membrane given by
Eq. (A10a) reads

τ θθ
,θ + �

φ
φθτ

θθ + �θ
φφτφφ + �f θ = 0. (A14)

At zeroth order, the nonvanishing components of the
curvature tensor are bθθ = −1 and bφφ = − sin2 θ . For the
normal traction jump Eq. (A10b) we therefore get

−τ θθ − sin2 θτφφ + �f n = 0. (A15)

After substitution and writing the projected equations in
the spherical coordinates basis vectors, we immediately get
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the following set of equations:

2κS

3
((1 + C)εθθ,θ + Cεφφ,θ + (εθθ − εφφ) cot θ ) + �fθ = 0,

(A16a)

−2κS

3
(1 + 2C)(εθθ + εφφ) + �fn = 0.

(A16b)

We further mention that for curved membranes, the normal
traction jump does not vanish in the plane stress formulation
employed here because the zeroth order in the curvature tensor
is not identically null. Indeed, this is not the case for a
planar elastic membrane where the resistance to shearing only
introduces a jump in the tangential traction jumps [52,53].

By substituting εθθ and εφφ with their expressions,
Eqs. (A16) turn into the traction jumps equations (10).

2. Bending contribution

For the bending resistance, we use the linear model, in
which the bending moment is related to the curvature tensor
via [91,92]

Mβ
α = −κB

(
bβ

α − Bβ
α

)
, (A17)

where κB is the bending modulus and the spontaneous curva-
ture is set to Bβ

α = Gα,β · n corresponding to the undeformed
sphere. The mixed version of the curvature tensor bβ

α is
related to the covariant representation via bβ

α = bαδg
δβ . The

contravariant components of the transverse shearing vector
Q is obtained from a local torque balance with the applied
moment as Qβ = ∇αMαβ . Note that the raising and lowering
indices operations imply that Mαβ = gαγ gβδMγδ and that
Mαβ = Mδ

αgδβ . The meridional force reads

Qθ = −κB[(1 − cot2 θ )ur,θ + ur,θθ cot θ + ur,θθθ ].

The membrane equilibrium equations balancing the bend-
ing forces reads

−bβ
αQα + �f β = 0, (A18a)

∇αQα + �f n = 0, (A18b)

where for a first-rank tensor (vector) the covariant derivative
is defined as ∇βQα = ∂βQα + �α

βδQ
δ . The equilibrium equa-

tions can thus be written as

− κB[(1 − cot2 θ )ur,θ + ur,θθ cot θ + ur,θθθ ] + �fθ = 0,

(A19a)

− κB[(3 cot θ + cot3 θ )ur,θ − ur,θθ cot2 θ

+ 2ur,θθθ cot θ + ur,θθθθ ] + �fn = 0, (A19b)

corresponding to the traction jump given in Eq. (11).

APPENDIX B: TRANSFORMATION EQUATIONS
BETWEEN THE SCALED AND PHYSICAL QUANTITIES

In this Appendix, we shall state the transformation relations
between the scaled and physical quantities. The physical

quantities are denoted by a tilde while the absence of tilde
refers to the scaled ones. For the variables with the dimension
of length, such as r and R, we have r̃ = ra and R̃ = Ra. For
the velocity we have ṽ = va, for the force F̃ = Fa, for the
fluid viscosity η̃ = η/a, for the pressure p̃ = p/a and similar
for the traction jump �̃f = �f/a. For the shearing modulus
κ̃S = κS, for the bending modulus κ̃B = κBa2. It follows that
α̃ = αa and α̃B = αBa3.

APPENDIX C: FORCE-FREE CONDITION

In this Appendix, we shall show that for finite shearing
modulus, the force free condition assumed for the capsule is
satisfied.

The induced hydrodynamic force on the capsule is com-
puted by integrating the normal stress vector over the capsule’s
outside surface A+ as [93]

F1 =
∫

A+
σ · er dA = A0 F2, (C1)

meaning that the hydrodynamic force in the multipole ex-
pansion is given only by the coefficient of the monopole field
[59]. For shearing-only and bending-only membranes, we have
shown that A0 = 0 as can be inferred from Eqs. (47) and (55).
This is the case also for a membrane with both shearing and
bending resistances. We therefore conclude that no net force
is exerted on the capsule.

We note that, for infinite shearing modulus, i.e. in the
hard-sphere limit, A0 �= 0 as can clearly be seen in Eq. (49a).
Additional singularities therefore need to be added to the
reflected flow field in order to ensure the force free assumption
(see Ref. [57] for further details.)

APPENDIX D: ESTIMATION OF THE NUMBER OF
TERMS REQUIRED FOR THE COMPUTATION OF

PARTICLE SELF-MOBILITY

In this Appendix, we shall determine the number of terms
required for the computation of particle self-mobility in order
to achieve a given precision.

Let us denote by fn(ξ ) the general term of the function
series giving the particle mobility correction in Eq. (59). For a
large value of n, we have the leading order asymptotic behavior

fn(ξ ) = 3b

8
(1 − ξ 2)2n2ξ 2n+4 + O(nξ 2n), (D1)

which does not depend on capsule shearing and bending
properties. In order to compute an infinite series numerically
up to a given precision, we define the truncation error as

E(N ) :=
∣∣∣∣∣

∞∑
n=N+1

fn(ξ )

∣∣∣∣∣
	 3b

8

−N2ξ 4 + (2N2 + 2N − 1)ξ 2 − (N + 1)2

1 − ξ 2
ξ 2N+6.
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Given a certain precision ε, the number of terms N

required to achieve the desired precision can be determined
by solving the inequality E(N ) < ε. For example, by taking
h = 2b, b = 1/10 and requiring a precision ε = 10−4, only
29 terms in the series are needed. For b = 10−3 however,
2993 terms are needed. As a result, more terms are required

for convergence when the capsule radius is taken very large,
i.e., when ξ ∼ 1. By requiring a precision ε = 10−6, 44
and 4316 terms are necessary for b = 1/10 and b = 10−3,
respectively. A precision of ε = 10−4 has been consistently
adopted throughout this work.
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[38] F. Jünger, F. Kohler, A. Meinel, T. Meyer, R. Nitschke,
B. Erhard, and A. Rohrbach, Biophys. J. 109, 869 (2015).

[39] M. Irmscher, A. M. de Jong, H. Kress, and M. W. J. Prins,
Biophys. J. 102, 698 (2012).

[40] D. Mizuno, Y. Kimura, and R. Hayakawa, Phys. Rev. E 70,
011509 (2004).

[41] Y. Kimura, T. Mori, A. Yamamoto, and D. Mizuno, J. Phys.:
Condens. Matter 17, S2937 (2005).

[42] A. E. Cervantes-Martı́nez, A. Ramı́rez-Saito, R. Armenta-
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