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A variety of numerical methods exist for the study of deformable particles in dense
suspensions. None of the standard tools, however, currently include volume-changing
objects such as oscillating microbubbles in three-dimensional periodic domains. In
the first part of this work, we develop a novel method to include such entities based
on the boundary integral method. We show that the well-known boundary integral
equation must be amended with two additional terms containing the volume flux
through the bubble surface. We rigorously prove the existence and uniqueness of
the solution. Our proof contains as a subset the simpler boundary integral equation
without volume-changing objects (such as red blood cell or capsule suspensions)
which is widely used but for which a formal proof in periodic domains has not been
published to date.

In the second part, we apply our method to study microbubbles for targeted drug
delivery. The ideal drug delivery agent should stay away from the biochemically
active vessel walls during circulation. However, upon reaching its target it should
attain a near-wall position for efficient drug uptake. Though seemingly contradictory,
we show that lipid-coated microbubbles in conjunction with a localized ultrasound
pulse possess precisely these two properties. This ultrasound-triggered margination
is due to hydrodynamic interactions between the red blood cells and the oscillating
lipid-coated microbubbles which alternate between a soft and a stiff state. We find
that the effect is very robust, existing even if the duration in the stiff state is more
than three times lower than the opposing time in the soft state.
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1. Introduction
Margination refers to the effect that stiff objects such as platelets, leukocytes or stiff synthetic
microparticles preferentially travel along the walls in suspension flows, e.g. in the vascular
system [1–13]. This is a result of softer particles such as red blood cells (RBCs), drops or
capsules migrating towards the center away from the boundaries [14–20]. A similar effect occurs
not only in Poiseuille but also in bounded shear flow due to the image stresslet generated by
the presence of the wall [18, 21, 22]. Migration behavior has implications for targeted drug
delivery as efficient drug uptake is only possible if the drug delivery agents are positioned
close to the walls of the blood vessels near the target organ [23–25]. Accordingly, it advocates
the use of stiff particles as drug delivery agents. Yet, during the transport phase towards the
target the agents should remain buried in the vessel interior to avoid high shear stress and
premature biochemical interaction with the endothelial wall. This would speak in favor of using
soft particles. Being able to combine both seemingly contradicting properties might lead to a
very effective drug administration protocol.

One of the most promising approaches for targeted drug delivery is the use of coated
microbubbles [ultrasound contrast agents, see e.g. 26–29] to actively and selectively enhance
drug uptake [24, 25, 30–34]. In the simplest scenario, microbubbles are injected together with
the actual drug suspension and an ultrasound pulse is applied at the target organ which makes
the bubbles oscillate periodically. This strongly enhances drug uptake due to the forces that
the oscillating microbubbles exert on nearby endothelial cells [24]. More recently, there have
also been numerous attempts to use the bubbles themselves as drug carriers by biochemically
attaching active drug substances e.g. on the bubble surface which are released due to an
ultrasound pulse at the target organ [24, 31, 32].
Microbubbles coated with a phospholipid layer [28, 30] are usually rather soft deformable

objects in the absence of ultrasound [35, 36]. They would therefore be expected to be buried
inside the blood stream akin to RBCs, as also concluded from in-vivo experiments [37]. This
allows for their safe transport, but makes them at first sight unsuitable candidates for drug
delivery. Yet, during ultrasound exposure bubble expansion beyond a critical radius Rsoft in
the low pressure phase causes stiffening of the bubble shell [35, 36, 38] which might induce
margination. On the other hand, shrinking in the high pressure phase leads to buckling
(softening) of the phospholipid shell [39]. Since the bubbles thus rapidly oscillate between a
soft and a stiff state, it is a priori unclear if and to what extent such objects would show
margination.
We study this question by means of 3D numerical simulations. Many methodologies are

available for computing flows with hard or deformable particles, provided that the volume of each
particle remains unchanged. These methods are able to accurately reproduce the margination of
stiff particles which originates from their hydrodynamic interaction with the surrounding RBCs.
Here however, we require a method that can handle deformable volume-changing microbubbles
together with RBCs in a periodic channel. Such a method is currently not available. The first
part of our paper therefore deals with the development of our volume-changing object boundary
integral method (VCO-BIM) in periodic domains. Compared to existing boundary integral
formulations we find that additional terms occur which account for the volume fluxes across
the bubble surfaces. We prove mathematically that the resulting Fredholm integral equation
has exactly one solution. The proof and the method hold for an arbitrary amount of volume-
changing objects and capsule-like entities (RBCs, vesicles, drops, etc.) with arbitrary viscosity
ratios. We give the proof in some detail and generality since a number of recent publications
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[e.g. 40–43] derive and use boundary integral equations in periodic domains (without bubbles),
but a proof of uniqueness and existence of their solution has not been established to date. We
also note that very occasionally boundary integral methods have been used with expanding
bubbles [44–47], but these attempts have been restricted to infinite domains, making them
unsuitable for blood flow simulations.
In the second part we use our VCO-BIM to find that microbubbles indeed show what we

call ultrasound-triggered margination (UTM): Ultrasound exposure causes rapid and reliable
margination of otherwise soft microbubbles. UTM is caused by the special properties of the
lipid bubble shell and their interaction with the red blood cells. The effect is robust and
rapidly drives microbubbles towards the endothelial wall even if the “stiff time” (i.e. the time
during which the bubble size is larger than the critical radius Rsoft) is more than three times
smaller than the opposing “soft time”. Phospholipid coated microbubbles are thus shown
to simultaneously possess two highly desirable, but seemingly contradicting properties: safe
passage in the low-shear zones of the vessel interior and near-endothelial position at the target
organ, the latter being easily controllable by ultrasound exposure.

2. The volume-changing object boundary integral method
Obtaining numerical solutions of the Stokes equation via boundary integral methods has a long
history starting with the publication by Youngren and Acrivos [48]. Well established is the
direct method that is suitable for the simulation of incompressible deformable particles with
viscosity ratios λ 6= 0,∞ in an infinite domain [49]. Rigorous proofs of existence and uniqueness
of the solution exist [e.g. 50–53]. They are enabled by the fact that the equation is a Fredholm
integral equation of the second kind, allowing for the application of the Fredholm theory [e.g.
54]. If deformable bubbles (λ = 0) with volume changes are included, only the method in an
infinite domain but no complete proof exists [47].
Indirect boundary integral methods solve a (typically second kind) equation for an auxiliary

field, from which the physical velocity can be computed afterwards. Such a formulation has
been used to model expanding bubbles in an infinite domain with established existence and
uniqueness results for the solution [44–46]. Another indirect variant is the completed double-
layer boundary integral method (CDLBIEM) tailored for simulating rigid objects (λ = ∞),
with proofs in infinite domains being well-established [e.g. 53, 55–57].

Without bubbles, equations in periodic domains for direct [e.g. 40–42, 58–62] and indirect
methods [e.g. 2, 6, 43, 63–69] are well known. The general geometry Ewald-like method
(GGEM) also uses an indirect formulation to make the equations amenable to an accelerated
computation. This was mostly used for problems where two of the three spacial directions
are periodic [3, 70–77]. Yet, statements regarding existence and uniqueness of the solution
are lacking so far. This may be of some concern since some well-known proofs for the infinite
domain [e.g. 52, ch. 4.5] require an auxiliary field that would violate the conservation of the
ambient fluid if applied to periodic domains, even if all individual objects are volume-conserving.
The purpose of the present section is thus two-fold: First, we show that the presence of

volume-changing objects in periodic domains leads to new non-trivial terms in the equation for
the direct boundary integral method. Second, we rigorously proof the existence and uniqueness
of the solution of this periodic boundary integral equation employed in the present work and in
other publications as listed above.

For this, we start by deriving the Fredholm boundary integral (FBI) equation for 3D periodic
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domains with deformable capsule-like (λ 6= 0,∞) volume-conserving particles and deformable
volume-changing objects such as bubbles. The final result for NO objects Ok in a periodic
domain with unit cell Γ of volume VΓ is

uj(x0) = 2
1 + λ̄Ok

[
〈uj〉Γ −

1
8πµ

NO∑
q=1

(N∂OqF )j(x0)

+ 1
8π

NO∑
q=1

(1− λ̄Oq )(K∂Oqu)j(x0) + 1
VΓ

NB∑
q=1

QBqχ
(Bq)
j

]

− 1− λ̄Ok

1 + λ̄Ok

z
(k)
j (x0)

[∮
∂Ok

ul(x)nl(x) dS(x)−QOk

]
,

(1)

x0 ∈ ∂Ok , k = 1, . . . , NO , j = 1, 2, 3 .

This equation forms the basis of our VCO-BIM. Here, k is the index of the object on whose
surface the evaluation point x0 is located. Moreover, u on the left-hand side is the velocity
on the surface ∂Ok of the k’th object, 〈uj〉Γ the prescribed average flow through Γ and µ the
dynamic viscosity. λ̄Ok

is an effective viscosity ratio for the k’th object defined in equation
(13) below. Furthermore, F is the outer traction in case of bubbles and otherwise the jump of
the traction across the interfaces. N∂OqF and K∂Oqu are the usual single- and double-layer
integrals, respectively, evaluated with the Green’s functions for a 3D periodic domain (given by
equations (11) and (12)). The second term on the second line is the first novel contribution
from the NB volume-changing bubbles and contains the centroid χ(Bk) as well as the volume
flux QBk

into or out of the bubble. The latter is a, possibly time-dependent, prescribed quantity
chosen such that the sum of all fluxes is zero. Finally, the last line is essentially a part of
the so-called Wielandt deflation [57] where zk is a known function. Again, for bubbles a new
term due to the flux QOk

appears. As we will show, the last line is imperative for bubbles
(λ̄Ok

= 0) as it ensures uniqueness, contrary to objects with λ̄Ok
6= 0 where it is merely an

optional accelerator for the numerical procedure.
After introducing the system components in section 2.1, we use section 2.2 to derive the general

boundary integral equation including volume-changing bubbles in periodic domains. Section
2.3 then turns the boundary integral equation into the numerically solvable Fredholm boundary
integral equation (1) and, most importantly, rigorously proves existence and uniqueness of
the solution. This proof includes the periodic BIM equation without bubbles which is solved
numerically by a number of existing codes [e.g. 40–43]. Finally, section 2.4 gives some details
about how we model oscillating bubbles and 2.5 outlines the numerical implementation of our
method. Symbols are defined and explained on their first use, but are also listed in appendix A
as a quick reference.

2.1. System description
2.1.1. Periodicity and the unit cell

We mostly consider flows in 3D periodic systems. To this end, we introduce a triclinic unit cell
Γ ⊂ R3 that is spanned by the basis {a(1),a(2),a(3)} as shown in figure 1 (a). The three basis
vectors a(i) ∈ R3, i = 1, 2, 3, define a right-handed coordinate system. In the most general case
they are not required to be of unit length or orthogonal and might depend on time, although
the latter will not be explicitly considered here. Nevertheless, even static but skewed bases can
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C1 µλC1 n
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Figure 1: (a) Example of a triclinic unit cell Γ (thick lines), together with 11 replicas (thin, gray lines). In
this example, the two basis vectors a(1) and a(2) lie in the x-y-plane, but a(2) is not parallel to the y-axis.
(b) Two-dimensional sketch of the general three-dimensional problem. Γ ⊂ R3 contains the whole unit cell
(everything within the dashed border ∂Γ). Ω ⊂ Γ is the ambient fluid with dynamic viscosity µ (light blue). As
an example, two capsule-like entities (C1, C2), two volume-changing bubbles (B1, B2) and a wall W1 are shown.
The normal vectors always point into Ω. The arrows on the left represent an imposed flow.

be useful in practice, for example to model so-called deterministic lateral displacement devices
[78–80]. The surface ∂Γ of the unit cell is not included in the open set Γ. We will denote the
volume by VΓ.

To cast the concept of periodicity into mathematical terms, we introduce by

X(α) := α1a
(1) + α2a

(2) + α3a
(3) (2)

some grid vector with some grid index α ∈ Z3. The unit cell Γ is assumed to be replicated
infinitely throughout space by displacing it with all possible grid vectors. We will show in
appendix B that actually any of these boxes with any origin can be chosen as Γ. Furthermore,
a general function f : R3 → R is said to periodic if it satisfies

f(x+X(α)) = f(x) ∀x ∈ R3 and ∀α ∈ Z3 . (3)

The reciprocal (Fourier) unit cell is spanned by the reciprocal basis vectors b(j) ∈ R3, j = 1, 2, 3,
defined by a(i) · b(j) = 2πδij . Some general Fourier grid vector is then denoted by

k(κ) := κ1b
(1) + κ2b

(2) + κ3b
(3) , (4)

with κ ∈ Z3.

2.1.2. System components

The general system considered in this section is depicted in figure 1 (b). We introduce the
ambient fluid Ω ⊂ Γ which represents the open set of the space within the unit cell Γ but
outside of any immersed object. The fluid is assumed to have a constant dynamic viscosity µ
and is governed by the usual Stokes equation and incompressibility condition. Furthermore, we
have NO objects Ok ⊂ Γ, k = 1, . . . , NO in the unit cell as further detailed below. For now we
assume that all of them are completely located within Γ and relax this requirement later on
(which is required for dynamic simulations of dense suspensions, see appendix B). No object
shall overlap with or contain any other object. The 2D surfaces of the objects embedded in
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3D space will be denoted by the symbol “∂”, e.g. ∂Ok. We also assign a velocity u(x) to each
point x ∈ Γ̄, where the bar represents the closure of the set.

Regarding the immersed objects, we consider three different types. First, deformable particles
that can be used to mimic “capsule-like” entities (such as vesicles, drops or red blood cells).
The i’th capsule will be denoted by the open set Ck ⊂ Γ with k = 1, . . . , NC , where NC are the
number of capsules. Their inside is filled with some Stokesian fluid that has a dynamic viscosity
of µλCk

, where λCk
> 0 is the viscosity ratio between the inner and outer fluids. Their volume

is conserved and as such the net flux QCk
into or out of the capsules is zero. Deformations

are governed by the jump of the traction 4f across their surfaces ∂Ck. This traction jump is
calculated from an appropriate constitutive law that determines the actual object properties.
The velocity across the interfaces is assumed to be continuous.

Second, NW non-closed objects Wk, k = 1, . . . , NW , may exist that can be used to model
deformable (fixed traction jump) or rigid (prescribed velocity) walls. Note that we set Wk =
∂Wk, i.e. these objects do not have some “inside”. The velocity across the walls is assumed to
be continuous.
Third, we introduce our novel ingredient, NB bubble-like objects Bk, k = 1, . . . , NB whose

volumes are allowed to change. Contrary to capsules their inside is filled with some compressible
fluid such as air that has a much lower viscosity than the ambient fluid. Therefore, the detailed
flow field inside the bubbles will not be considered and, instead of the Stokes equations, the
essential model assumption for this inner fluid is simply

∇ · u(x) = ck , x ∈ Bk , k = 1, . . . , NB . (5)

Here, ck are some prescribed constants, meaning that the particles expand or contract homoge-
neously over their whole interior and that any inhomogeneities such as eddies are considered
to vanish instantaneously. But note that ck may depend on the time allowing for oscillating
bubbles. As shown below (eq. (30)), ck is related to the net flux QBk

into or out of the bubble
by ck = QBk

/VBk
, where VBk

is the k’th bubble’s volume. Moreover, the surface deformation of
the bubbles is governed by the prescribed traction at the outside of the surfaces, as further
elaborated in section 2.4.

For convenience, some arbitrary object of any type will be denoted by Ok. We further define
NO := NC + NB + NW as well as O := C ∪ B ∪ W where C/B/W mean the unions of all
capsules/bubbles/walls. All in all, we have Γ = Ω ∪ Ō. Furthermore, unit normal vectors are
denoted by the symbol n. We choose the convention that the normal vector of every capsule
and bubble points into Ω. The normal vector of walls may point in any of the two possible
directions. The normal vector on ∂Γ shall point into Ω.

2.2. Deriving the boundary integral equation with volume-changing objects
2.2.1. The general boundary integral equation

In order to introduce the required notation and equations for later on, we start from the
standard Stokes and continuity equations for flows at low Reynolds numbers which corresponds
to the typical situation encountered in the microcirculation [81, 82]:

−∇P (x) + µ∇2u(x) = 0 , (6a)
∇ · u(x) = 0 , (6b)
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for x ∈ Ω. Here, P is the pressure, ∇2 the usual 3D Laplace operator and u the fluid velocity.
The inside of capsules is governed by analogous expressions, but with a different viscosity in
general. Body forces such as gravity will be neglected, but can be easily incorporated via an
effective pressure [52, eq. (1.2.9)].

Next, we introduce the traction f acting on the surface ∂Ok of some object Ok via

fi(x) := σij(x)nj(x) , x ∈ ∂Ok , i = 1, 2, 3 , (7)

where the fluid stress tensor is defined by

σij := −Pδij + µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
, x ∈ Ω , i, j = 1, 2, 3 . (8)

Summation over repeated Cartesian components is implied throughout this work. One needs to
take the limit of the stress tensor onto the surface for the evaluation of equation (7). This limit
can be taken from both sides, leading to the traction on the outside (f+, limit from Ω onto the
surface) and the inside (f−, defined with the outer normal vector) of a closed object’s surface.
The difference is the traction jump

4f(x) := f+(x)− f−(x) , x ∈ ∂Ok , (9)

which is the major quantity coupling the flow with the surface mechanics. For a wall, 4f is
the difference of the tractions on its two sides.
Equations (6) can be efficiently and accurately solved via the boundary integral method

[49, 52, 82]. Assuming that all objects are located within the unit cell Γ (for objects crossing
the unit cell boundary, see appendix B), one can derive the boundary integral (BI) equation
[compare 52, ch. 2.3, pages 37 and 143]

uj(x0) =− 1
8πµ

NO∑
q=1

(N∂OqF )j(x0) + 1
8π

NO∑
q=1

(1− λ̄Oq )(K∂Oqu)j(x0)

− 1
8πµ(N∂Γf)j(x0) + 1

8π (K∂Γu)j(x0) ,
(10)

x0 ∈ Ω , j = 1, 2, 3 .

Note that the evaluation point x0 is in the ambient fluid and not within any object or on any
surface. The single-layer integral (or single-layer potential) over some surface S is defined as

(NSf)j(x0) :=
∫
S
fi(x)Gij(x,x0) dS(x) , j = 1, 2, 3 , (11)

and the double-layer integral is

(KSu)j(x0) :=
∫
S
ui(x)Tijl(x,x0)nl(x) dS(x) , j = 1, 2, 3 . (12)

These integrals exist for x0 ∈ R3, notably in the improper sense if x0 ∈ S or if x0 is on some
periodic image of S [54, ch. 6]. The improper double-layer integral is in this case sometimes
also denoted as a principal value integral [52, p. 27].
F is a “unified traction” which represents either the traction f+ on the outside in case of

the bubbles, or the traction jump 4f in case of the capsules and the walls. For notational
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convenience we have abbreviated f := f+ in the last line of equation (10). Moreover, an
“effective” viscosity ratio is defined as

λ̄Oq :=


λCq if Oq is a capsule Cq,
1 if Oq is a wall Wq,
0 if Oq is a bubble Bq,

for q = 1, . . . , NO . (13)

Thus, if λ̄Oq = 1, the corresponding terms in the second sum are always absent (regardless of
the value of K∂Oqu).
The wall contributions in equation (10) can be derived by considering as a starting point

an object with a finite thickness. Taking the limit as the thickness tends to zero, integrals
that previously went over the distinct opposing sides of the wall now go over essentially
the same surface, except that the integrands are still evaluated on their respective sides.
The normal vectors on these two sides are perfectly antiparallel. Additionally using the
continuity of the velocity, one finds that the double-layer integral drops out (represented by
λ̄W = 1). Furthermore, for the single-layer integral we have

∫
∂W+∪∂W− f

+
i GijdS =

∫
∂W+(f+

i −
f−i )GijdS ≡

∫
∂W 4fiGijdS where ∂W± denotes the two sides of the zero-thickness wall, and

equation (9) was used to introduce the traction jump [52, p. 37]. The integration
∫
∂W goes

over only one side of the wall. Walls spanning through the whole domain Γ can be introduced
by a similar limiting procedure.
Note that the BI equation (10) is actually valid for any Green’s functions, no matter if

periodic or not. However, in order to be able to compute anything in practice, they should
follow the general symmetries of the system. As we want to implement a periodic domain, we
will next introduce the appropriate expressions.

2.2.2. Appropriate Green’s functions for a 3D periodic domain

Green’s functions Gij and pj for the velocity and pressure, respectively, are obtained by solving
the singularly forced Stokes equation. It is possible to derive specialized Green’s functions
such as for singly [83] or doubly [83–85] periodic domains or with incorporated stationary walls
[86–89]. However, we want to be able to apply our method for general channel geometries, and
therefore employ the standard Green’s functions for a 3D periodic domain. According to [58]
and [83], they are given by

Gij(x,x0) = 〈Gij〉Γ + 8π
VΓ

∑
κ 6=0

1
|k(κ)|2

δij − k
(κ)
i k

(κ)
j

|k(κ)|2

 e−ik(κ)·(x−x0) , (14)

pj(x,x0) = 8π
VΓ
xj + 8π

VΓ
i
∑
κ 6=0

k
(κ)
j

|k(κ)|2
e−ik(κ)·(x−x0) , (15)

with x ∈ R3 \ {x0} , i, j = 1, 2, 3

for the velocity (Gij) and the pressure (pj), respectively. x0 ∈ Γ̄ is arbitrary but fixed. The
sums go over all possible Fourier grid vectors k(κ) as defined in eq. (4) with κ ∈ Z3 \ {0}, and i
is the imaginary unit. Gij satisfies the incompressibility condition,

∂Gij(x,x0)
∂xi

= 0 , x ∈ R3 , i, j = 1, 2, 3 . (16)
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Furthermore, 〈Gij〉Γ := 1
VΓ

∫
ΓGij(x,x0) dx3 is independent of x0 and constitutes a free param-

eter representing an imposed average net flow for the Green’s function system. We choose the
coordinate system such that it is zero [41]:

〈Gij〉Γ = 0 , i, j = 1, 2, 3 . (17)

Note that the full system can nevertheless have an imposed flow which will be introduced in
section 2.2.4 via double-layer integrals over the unit cell boundary.

Combining both of the above equations [via 52, eq. (2.1.8)], the Stresslet is found to be

Tijl(x,x0) = −8π
VΓ
xjδil + T̆ijl(x,x0) , x ∈ R3 \ {x0} , i, j, l = 1, 2, 3 . (18)

Tijl contains a linear (non-periodic) part, whereas the periodic part is

T̆ijl(x,x0) := −8π
VΓ

i
∑
κ 6=0

k(κ)
j δil + k

(κ)
l δij + k

(κ)
i δlj

|k(κ)|2
− 2

k
(κ)
i k

(κ)
j k

(κ)
l

|k(κ)|4

 e−ik(κ)·(x−x0) .

The periodicity holds for both arguments, as well as for the Stokeslet:

Gij(x,x0) = Gij(x+X(α),x0 +X(α′)) , (19a)
T̆ijl(x,x0) = T̆ijl(x+X(α),x0 +X(α′)) ∀α,α′ ∈ Z3 , i, j, l = 1, 2, 3 . (19b)

This also implies that x0 can actually be located within almost the whole space R3 \ {x}.
Equations (14) and (18) are the Green’s functions used below. The above given forms,

however, are not computable in practice due to their slow convergence. Dramatic speedups are
achieved by using the Ewald decomposition [58]. The final formulas are given by Zhao et al.
[42].
We will additionally need two general relations. Hence, let O be some object with a closed

surface ∂O, and let {O(α)} be the set of O that is offset with all possible periodic grid vectors
X(α) from equation (2). Then, for some proper Green’s functions:

∮
∂O
Tijl(x0,x)nj(x) dS(x) = δil


8π if x0 ∈ {O(α)}
4π if x0 ∈ {∂O(α)}
0 otherwise

, x0 ∈ R3 , (20)

[52, eq. (3.2.7)],∮
∂O
ni(x)Gij(x,x0) dS(x) =

∮
∂O
Gji(x,x0)ni(x) dS(x) = 0 , x0 ∈ R3 , (21)

[52, eqs. (2.1.4) and (3.1.3)].

2.2.3. Boundary conditions for a 3D periodic domain

As we wish to simulate a 3D periodic domain with the BI equation (10), we stipulate as a
boundary condition that the velocity u shall be periodic, i.e.

u(x+X(α)) = u(x) ∀x ∈ R3 and ∀α ∈ Z3 . (22)

Note that in principle u may contain a linear component, as long as the arrangement of the
objects and their images retain a triclinic periodicity. This could be used to simulate an overall

10



linear shear flow [40, 90–93]. However, this also usually implies that the basis vectors a(i) of
the unit cell have to be time dependent, leading to additional problems for longer simulation
times [94, p. 221].
As for the pressure Green’s function from equation (15), it is possible to have a non-zero

pressure gradient over the unit cell that drives a certain average flow 〈u〉Γ. Hence, we can
decompose the pressure as P (x) = 〈∇P 〉Γ · x+ P̆ (x) for x ∈ R3 where P̆ denotes the periodic
part, and

〈•〉Γ := 1
VΓ

∫
Γ
• dx3 (23)

is the average over the whole unit cell. Using equations (8) and (7), we find for the traction
[also compare 59, eq. (2.23)]

fi(x) = −〈∇P 〉Γ · xni(x) + f̆i(x) , i = 1, 2, 3 , (24)

where f̆ denotes the periodic part.
We finally remark that the BI equation (10) can be used with any Green’s function to

simulate a periodic domain, provided that the periodicity condition (22) is enforced. Using the
periodic Green’s functions from equations (14) and (18) is merely a convenient choice since the
integrals over ∂Γ then yield simple expressions, as shown next.

2.2.4. Computing the integrals over the unit cell’s surface for a periodic domain

Single-layer integral: With the help of the decomposition (24), the periodicity of the involved
quantities (due to eqs. (19a) and (22)) and the divergence theorem together with eqs. (17) an
(16), one can show [59]

(N∂Γf)j(x0) = 0 , x0 ∈ Ω , j = 1, 2, 3 . (25)

Double-layer integral: It is tempting to assume that the double-layer integral K∂Γu over the
unit cell surface ∂Γ is also zero. This, however, will turn out to be wrong if a net flow is imposed
and/or if volume-changing objects are included. The latter will lead to an additional novel
contribution to the equations. Following Zick and Homsy [59], the first step for the evaluation
is to use the decomposition (18). The integral term containing T̆ijl vanishes due to periodicity
(compare equations (22) and (19b), and note that normal vectors on opposing sides of ∂Γ are
antiparallel). The other term is treated by adding and subtracting integrals over the objects,
resulting in

(K∂Γu)j(x0) = −8π
VΓ

[ ∮
∂Ω

xjui(x)ni(x) dS(x)−
∮

∂C∪∂B

xjui(x)ni(x) dS(x)
]
. (26)

Integrals over walls give zero contributions since the velocity u is continuous across their surface,
but the normal vectors on opposite sides have different signs. Using the continuity of the normal
velocity across the interfaces and applying the divergence theorem while watching out for the
normal vector convention (always into the ambient fluid Ω), one obtains

(K∂Γu)j(x0) = −8π
VΓ

[
−
∫

Ω
uj(x) dx3 −

∫
C∪B

uj(x) dx3

−
∫

Ω∪C

xj∇ · u(x) dx3 −
∫
B

xj∇ · u(x) dx3
]
.

(27)
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The integrals in the first line can be combined to
∫

Γ u dx3 = VΓ 〈u〉Γ, with the average defined
in equation (23) (walls are nullsets). Moreover, the divergence of the velocity vanishes in Ω and
the capsules C because of eq. (6b) (Stokesian fluids). Furthermore, the last term is absent in
existing formulations without volume-changing objects, but here it is non-zero in general and
therefore requires special attention.

A more usable form of this last term may be obtained by using the model from equation (5).
For a particular bubble Bk, k = 1, . . . , NB, we immediately find∫

Bk

xj∇ · u(x) dx3 = ckVBk
χ

(Bk)
j , j = 1, 2, 3 , (28)

where we have defined the geometric centroid

χ(Bk) := 1
VBk

∫
Bk

x dx3 . (29)

VBk
is the bubble volume. We obtain a connection between ck to the more intuitive flux QBk

out of or into a bubble by computing

QBk
:=

∮
∂Bk

uini dS =
∫
Bk

∇ · u dx3 = ckVBk
. (30)

Putting it all together, the double-layer integral over ∂Γ hence becomes

(K∂Γu)j(x0) = 8π 〈uj〉Γ + 8π
VΓ

NB∑
k=1

QBk
χ

(Bk)
j , x0 ∈ Ω , j = 1, 2, 3 . (31)

Similar to 〈Gij〉Γ for the Green’s function from equation (14), the average velocity 〈uj〉Γ is a
free parameter that can be used to drive a flow through the system [42]. Since the flux QBk

is
also a prescribed input parameter, and the centroid of an object can be easily computed [see
e.g. 95], we have therefore obtained an expression of the BI equation that is actually usable in
practice.

2.2.5. The full boundary integral equation and some remarks

The BI equation (10) thus becomes

uj(x0) = 〈uj〉Γ −
1

8πµ

NO∑
q=1

(N∂OqF )j(x0) + 1
8π

NO∑
q=1

(1− λ̄Oq )(K∂Oqu)j(x0)

+ 1
VΓ

NB∑
k=1

QBk
χ

(Bk)
j , x0 ∈ Ω , j = 1, 2, 3

(32)

with the novel bubble term in the last line. The single- as well as the double-layer integrals must
be evaluated with the appropriate Green’s functions from equations (14) and (18), respectively.
We first remark that equation (32) reduces to the case of the infinite system for VΓ → ∞

(i.e. 1
VΓ

= 0), as the flux terms vanish and the Green’s functions converge to the well-known
expressions for an infinite system, i.e. [52]

Gij(x,x0) = δij
|x̂|

+ x̂ix̂j
|x̂|3

, x,x0 ∈ R3 \ {x = x0} , i, j = 1, 2, 3 (33a)
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for the Stokeslet, and

Tijl(x,x0) = −6 x̂ix̂j x̂l
|x̂|5

, x,x0 ∈ R3 \ {x = x0} , i, j, l = 1, 2, 3 (33b)

for the Stresslet, where x̂ := x− x0.
Second, the imposed average flow 〈uj〉Γ can be interpreted as the flow that would prevail in

the absence of any objects, and is the most convenient quantity to prescribe a certain flow. A
relationship to the corresponding pressure gradient is easily established [42, eq. (8)].

Third, the prescribed fluxes for the bubbles cannot be chosen arbitrarily. To see this, consider
on the one hand ∮

∂Γ
uini dS = 0 , (34)

where we used once again the periodicity of the velocity u and the opposite signs of the normal
vector n on opposing sides of the unit cell surface ∂Γ. On the other hand,∮

∂Γ
uini dS =

∮
∂Ω

uini dS −
∮

∂C∪∂B

uini dS = −
NB∑
k=1

QBk
, (35)

where the divergence theorem and the incompressibility of the velocity in Ω and C together
with the definition of the flux have been employed. Combining these two equations, we find

NB∑
k=1

QBk
= 0 . (36)

Hence, the fluxes must be chosen such that the total flux is zero, i.e. that the outer fluid volume
is conserved. This implies that at least two bubbles are required that oscillate out-of-phase
for the periodic system. Furthermore, if the ambient fluid domain Ω is not simply connected
(imagine a tube separating the unit cell Γ into an inner and an outer domain), the fluxes must
be chosen such that the volume within the respective domains is conserved.
Fourth, the initial assumption that all objects are completely located within the unit cell

can be relaxed. Surface integrals can be evaluated continuously over the objects’ surfaces even
if these surfaces cross the boundary of the unit cell, as is common in simulations of dense
suspensions. This property is usually silently assumed in the literature, although it is a priori
unclear if it holds due to the linear part in the stresslet (18) and the non-periodic centroid
term in equation (32). With volume-changing objects it actually follows from the non-trivial
interplay between the integrals over the unit cell’s surface ∂Γ and the centroid term. We proof
this result explicitly in appendix B.

2.3. Fredholm integral equation
The BI equation (32) can be used to compute the flow velocity everywhere within the ambient
fluid Ω if the tractions/traction-jumps, the velocities and the fluxes are known. However, we
usually prescribe either the tractions/traction-jumps or the velocities, while the other quantity
is unknown. The basic idea to obtain a determining equation is to use eq. (32) and move the
evaluation point x0 onto the surface of the objects. We thereby obtain a so-called Fredholm
integral equation which can be solved for the unknown variables. Section 2.3.1 summarizes the
result of this standard procedure. The subsequent sections are devoted to ensuring and proving
the uniqueness of the solution. This cannot be taken for granted if bubbles are included. But
even without bubbles it has so far not yet been rigorously proven in periodic systems.
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2.3.1. Basic equation

We now assume that all objects have surfaces of Lyapunov type [i.e. are “smooth”, see 54, p. 96,
for more details]. If corners or edges within the surfaces existed, the results would change, see
e.g. Kress [54, ch. 2.5] and Pozrikidis [52, p. 37]. For smooth objects the single-layer potential is
continuous [53, ch. 3.4.4] if x0 is moved across the surface and the double-layer potential makes
a jump [52, eq. (2.3.12)]. Following these two references, we obtain the Fredholm boundary
integral (FBI) equation as

uj(x0) = 2
1 + λ̄Ok

[
〈uj〉Γ −

1
8πµ

NO∑
q=1

(N∂OqF )j(x0)

+ 1
8π

NO∑
q=1

(1− λ̄Oq )(K∂Oqu)j(x0) + 1
VΓ

NB∑
q=1

QBqχ
(Bq)
j

]
,

(37)

x0 ∈ ∂Ok , k = 1, . . . , NO , j = 1, 2, 3 .

Note that the evaluation point x0 is located directly on the surfaces of the objects. The single-
as well as the double-layer integrals exist as improper integrals [54, ch. 6]. Equation (37)
corresponds to the first two lines in equation (1). The missing two terms will be introduced in
section 2.3.3 to ensure uniqueness of the solution.
The above FBI equation can in principle be used to find the unknown quantity – if the

solution were unique in all cases. In our application presented in section 3, we prescribe the
traction/traction jump F on all objects (also on walls for efficiency reasons). This leads to a
so-called Fredholm equation of the second kind that is amenable to the Fredholm theory. As
will be analyzed and fixed below, equation (37) has multiple solutions if bubbles are included.
Without bubbles, the solution is unique, as will also be shown below.

On the other hand, prescribing the velocities on all objects leads to a Fredholm equation of
the first kind which has various unfavorable properties: The solution is in general not unique,
the condition number grows with resolution [compare 56, p. 127 and [96]], and no general
mathematical theory exists. These are the reasons why alternative approaches for such problem
statements have been invented, e.g. the completed double-layer boundary integral method
[53, 56, 64].

Finally, prescribing the velocities on some objects and the tractions on others yields a mixed
type equation. Similar to the first kind type, no general theory exists and at least parts of the
system have “difficult” properties.

2.3.2. Fredholm theory and the non-uniqueness of solution

Henceforth, we consider the case when equation (37) is a Fredholm integral equation of the
second kind, i.e. when all velocities are unknown. In order to apply the Fredholm theory, we
need to introduce the homogeneous version of equation (37),

hj(x0) = 1
4π

1
1 + λ̄Ok

NO∑
q=1

(1− λ̄Oq )
∮
∂Oq

hi(x)Tijl(x,x0)nl(x) dS(x) , (38)

x0 ∈ ∂Ok , k = 1, . . . , NO , j = 1, 2, 3 ,

where h denotes an eigensolution to the eigenvalue 1. Note again that the double-layer integral
is meant to be absent for λ̄Oq = 1 objects, especially walls. The corresponding adjoint equation
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[52, p. 106 and 54] is given by

aj(x0) = 1− λ̄Ok

4π Mj [a](x0) , x0 ∈ ∂Ok , k = 1, . . . , NO , j = 1, 2, 3 , (39)

with the eigensolution a and the abbreviation

Mj [a](x0) :=
NO∑
q=1

1
1 + λ̄Oq

nl(x0)
∮
∂Oq

ai(x)Tjil(x0,x) dS(x) . (40)

The integral kernels and their adjoints are weakly singular [see 54, p. 31 and theorem 4.12,
52, pages 36 and 113, as well as 56, p. 137]. This means that all occurring integral operators
are compact [54, theorem 2.30], and that the eigensolutions of the homogeneous and adjoint
equations are continuous [see 54, p. 58].

For walls (i.e. open objects) we adopt the convention that closed surface integrals
∮
go over

both sides. Due to the continuity of the eigensolutions, however, they provide no contribution.
Alternatively, as in the derivation of the BI equation, one can also revert back to walls with finite
thickness and take the limit afterwards. The formulas in the following have to be interpreted in
the same way. Notice that in the adjoint equation integrals over objects appear which actually
have λ̄Oq = 1.

The compactness of the integral operators also implies that the Fredholm theory can be used
to make precise statements about uniqueness and existence of solutions [see 52, p. 114 and 54,
p. 55 f.]. For the present purpose the major theorem can be written as follows:
Theorem 1 (Fredholm alternative) 1. The homogeneous and adjoint equations (38) and

(39) have the same finite number of eigensolutions.

2. If the homogeneous equation (38) has only the trivial solution h ≡ 0, then the full
equation (37) has exactly one solution (existence and uniqueness).

3. If the homogeneous equation (38) has a nontrivial solution, then the full equation (37)
has solutions if and only if all eigensolutions a of the adjoint equation (39) satisfy

NO∑
k=1

∮
∂Ok

Rj(x)aj(x) dS(x) = 0 , k = 1, . . . , NO . (41)

Here, R contains all fully known terms (i.e. terms that are missing in the homogeneous
equation).

To arrive at uniqueness and existence statements therefore requires to know all solutions of
the adjoint equation. In case of equation (46), the solutions are

a(m)(x0) =
{
n(x0) if x0 ∈ ∂Bm
0 otherwise

, m = 1, . . . , NB , x0 ∈ ∂O . (42)

That these are indeed solutions can be easily shown with the help of equation (20). To show
that they are the only solutions requires a somewhat longer procedure, similar to section 2.3.4
(we skip it as it is not of any major interest here). Thus, the homogeneous equation (38) also
as NB solutions. Furthermore, we have Rj(x0) = 2

1+λ̄Ok

[
〈uj〉Γ −

1
8πµ

∑NO
q=1(N∂OqF )j(x0) +

1
VΓ

∑NB
q=1QBqχ

(Bq)
j

]
, and all solutions a(m) satisfy condition (41) due to equation (21). Hence,

by virtue of the Fredholm alternative, the FBI equation (37) has more than one solution if
bubbles are included.
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2.3.3. Ensuring uniqueness: The full equation

Equation (37) does not have a unique solution because the flux of the bubbles is not determined
by the equation. To remove this ambiguity, we introduce additional terms into equation (37) in
such a way that the solution of the new equation is unique and simultaneously also a solution
of the old equation (37). In analogy to Nie et al. [47], the modified equation is then given by
eq. (1), which is repeated here for convenience:

uj(x0) = 2
1 + λ̄Ok

[
〈uj〉Γ −

1
8πµ

NO∑
q=1

(N∂OqF )j(x0)

+ 1
8π

NO∑
q=1

(1− λ̄Oq )(K∂Oqu)j(x0) + 1
VΓ

NB∑
q=1

QBqχ
(Bq)
j

]

− 1− λ̄Ok

1 + λ̄Ok

z
(k)
j (x0)

[∮
∂Ok

ul(x)nl(x) dS(x)−QOk

]
,

(43)

x0 ∈ ∂Ok , k = 1, . . . , NO , j = 1, 2, 3 .

This is the central equation that is solved in our VCO-BIM. It is a direct method as the solution
u is the physical velocity rather than an auxiliary field. The fact that eq. (43) has exactly one
solution will be proven below and constitutes a central result of the present work. z(k) can be
chosen arbitrarily, as long as the restriction∮

∂Ok

z
(k)
j (x)nj(x) dS(x) = 1 , k = 1, . . . , NO (44)

is satisfied. A convenient choice is

z(k)(x) = n(x)/SOk
, x ∈ ∂Ok , k = 1, . . . , NO , (45)

where SOk
is the surface area of the k’th object. Furthermore, QOk

is the prescribed flux of
object Ok, which must be zero for all entities except the bubbles.
The integral term in the last line of eq. (43) can be interpreted as part of the so-called

Wielandt deflation procedure [57] for objects with viscosity ratios λ̄Ok
> 0. This method is

sometimes used to accelerate the convergence rate of iterative solution algorithms [41, 97], but
is otherwise optional for λ̄Ok

> 0. Choosing not to use it amounts to setting z(k) = 0 (in which
case condition (44) must be disregarded). For bubbles (λ̄Ok

= 0) that oscillate (QOk
6= 0),

however, an additional new term including the surface flux QOk
needs to be taken into account.

Note that the last line is an essential ingredient to ensure uniqueness of the solution for bubbles
(with and without volume changes), contrary to the usual situation found in the literature. We
also remark that the FBI equation remains valid in an infinite system (Γ→ R3) similar to the
BI equation from section 2.2.5.

The solution of the patched equation (43) is still a solution of the old equation (37). This can
be shown by multiplying eq. (43) with the normal vector nj , summing over j and integrating
over some object’s surface ∂Ok. Using relations (20), (21) and (44) gives

∮
∂Ok

uini dS = QOk
,

meaning that the flux out of or into the object matches with the prescribed value QOk
, as

expected. Moreover, substituting it back into eq. (43) recovers the original equation (37).
Despite the patch, equation (43) is still a Fredholm integral equation of the second kind for

the velocities on all objects if F is given. In order to apply the Fredholm theory, we need to
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introduce again the adjoint of the homogeneous equation, namely

aj(x0) = 1− λ̄Ok

4π Mj [a](x0)− 1− λ̄Ok

1 + λ̄Ok

nj(x0)
∮
∂Ok

z
(k)
l (x)al(x) dS(x) , (46)

x0 ∈ ∂Ok , k = 1, . . . , NO , j = 1, 2, 3 ,

with the abbreviation Mj from equation (40). a denotes again the eigensolutions to the
eigenvalue 1.
The goal now is to prove that eq. (46) has only the obvious solution a = 0. Theorem 1

then implies that the actual FBI equation (43) has exactly one solution. Unfortunately, the
procedure used by Pozrikidis [52, p. 116 f.] cannot be adapted for the proof in the periodic
system because the artificial flow that he introduces is a source field. This works in infinite
domains where the fluid can escape to infinity, but violates the conservation of the outer fluid
volume in periodic domains (even if all objects were volume conserving). We keep the proof
rather general, as none has been published before for the periodic system to the best of our
knowledge.

2.3.4. Proof of existence and uniqueness of the solution

As a start, we assume that there is at least one non-trivial solution a of the adjoint equation (46).
We then define an artificial velocity field similar to Odqvist [50, §4] by

Aj(x0) :=
NO∑
q=1

1
1 + λ̄Oq

∮
∂Oq

ai(x)Gij(x,x0) dS(x) , x0 ∈ R3 , j = 1, 2, 3 . (47)

This field has a few special properties. First of all, A is defined within the whole space R3

because it inherits the domain from the periodic Stokeslet and because such a single-layer
integral exists in the improper sense if x0 is located on any surface. Moreover, because the
eigensolutions a of the adjoint equation are continuous as explained above, A is continuous as
x0 crosses any object surface ∂O [53, ch. 3.4.4]. The field is also periodic due to eq. (19a), and
we have

∇ ·A(x0) = 0 , x0 ∈ R3 (48)

due to equation (16) and
〈A〉Γ = 0 (49)

because of equation (17).
Furthermore, if we define the associated pressure as

PA(x0) := µ
NO∑
q=1

1
1 + λ̄Oq

∮
∂Oq

ai(x)pi(x0,x) dS(x) (50)

with the Green’s function p for the pressure from eq. (15), one can show with the help of
the singular Stokes equation [83, eq. (2.2)] as well as equations (14) and (15) that the Stokes
equation with A is satisfied everywhere but on the surfaces, i.e.

−∇PA(x) + µ∇2A(x) = 0 , x ∈ R3 \ ∂{O(α)} . (51)
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{O(α)} denotes the objects and all of their periodic images. The Stokes equation can alternatively
be written as

∂σAij (x)
∂xi

= 0 , x ∈ R3 \ ∂{O(α)} , j = 1, 2, 3 , (52)

where the stress tensor is given by σAij := −PAδij + µ
(∂Ai
∂xj

+ ∂Aj

∂xi

)
. Continuing, the traction (cf.

eq. (7)) associated with A at the outside (fA,+) and inside surface (fA,−, normal vector to the
outside) of some object Ok can be expressed as [compare 53, eq. (3.4.61) and 50, eq. (2.15)]

fA,+j (x0) = − 4πµ
1 + λ̄Ok

aj(x0) + µMj [a](x0) , (53a)

fA,−j (x0) = + 4πµ
1 + λ̄Ok

aj(x0) + µMj [a](x0) , (53b)

x0 ∈ ∂Ok , k = 1, . . . , NO , j = 1, 2, 3 ,

where Mj was defined in equation (40). Solving equations (53) for a and M leads to

aj(x0) = −1 + λ̄Ok

8πµ
[
fA,+j (x0)− fA,−j (x0)

]
, (54a)

Mj [a](x0) = 1
2µ
[
fA,+j (x0) + fA,−j (x0)

]
, (54b)

x0 ∈ ∂Ok , k = 1, . . . , NO , j = 1, 2, 3 ,

The last required property of the artificial field A is the energy conservation. Following
Pozrikidis [52, ch. 1.5] and using equations (48) and (51), we can derive

NO∑
k=1

∮
∂Ok

fA,+j (x)Aj(x) dS(x) +
∮
∂Γ

fA,+j (x)Aj(x) dS(x) = −2µ
∫
Ω

3∑
i,j=1

[
EAij (x)

]2
dx3 .

The strain rate tensor is defined as

EAij (x) := 1
2

(
∂Ai(x)
∂xj

+ ∂Aj(x)
∂xi

)
, x ∈ R3 \ ∂{O(α)} , i, j = 1, 2, 3 . (55)

The integral over the unit cell’s surface ∂Γ is simply zero. This follows similar to the derivation
of the double-layer integral in section 2.2.4 because A is periodic, fA,+ contains at most a
linear component (due to the definition of the traction, eq. (7), the pressure, eq. (50), and
the linear term in the pressure Green’s function, eq. (15)), A is incompressible according to
eq. (48) and because the average flow is zero as given by equation (49). Furthermore, a similar
equation can be derived for the inside of the objects since A is defined everywhere. In the end,
we obtain

NO∑
k=1

∮
∂Ok

fA,+j (x)Aj(x) dS(x) = −2µ
∫
Ω

3∑
i,j=1

[
EAij (x)

]2
dx3 6 0 , (56a)

and ∮
∂Ok

fA,−j (x)Aj(x) dS(x) = 2µ
∫
Ok

3∑
i,j=1

[
EAij (x)

]2
dx3 > 0 , (56b)

k = 1, . . . , NO .

18



The inequalities follow because the viscosity µ is > 0 and the integrals contain kernels that are
obviously greater or equal to zero.

With all required properties of the artificial field A established, we now proceed to show that
the adjoint equation (46) does not have any non-trivial solution a. We will do this by a reductio
ad absurdum argument. Hence, assume that there is at least one non-trivial solution denoted
by a. Following [50, §4], we begin by substituting eqs. (54) into the adjoint (46), leading to

fA,+j (x0) = λ̄Ok

[
fA,−j (x0) + 8πµ

1 + λ̄Ok

nj(x0)
∮
∂Ok

z
(k)
l (x)al(x) dS(x)

]
, (57)

x0 ∈ ∂Ok , k = 1, . . . , NO , j = 1, 2, 3 .

We now multiply with Aj , sum over j and integrate over the surface of all objects. The
contribution from the second term is simply zero because we can use eq. (47) and write∮

∂Ok

Aj(x0)nj(x0) dS(x0) =

=
NO∑
q=1

1
1 + λ̄Oq

∮
∂Oq

ai(x)
[ ∮
∂Ok

Gij(x,x0)nj(x0) dS(x0)
]

︸ ︷︷ ︸
=0 because of eq. (21)

dS(x) = 0 . (58)

Thus we find

0 >
NO∑
k=1

∮
∂Ok

fA,+j (x)Aj(x) dS(x) =
NO∑
k=1

λ̄Ok

∮
∂Ok

fA,−j (x)Aj(x) dS(x) > 0 . (59)

The inequality signs follow from the energy conservation (56) and equation (13). Both inequality
signs together imply

NO∑
k=1

∮
∂Ok

fA,+j (x)Aj(x) dS(x) = 0 , (60)

and due to eq. (56a) we thus have EAij (x) = 0 for all x ∈ Ω and i, j = 1, 2, 3. This in turn
means that A can only represent rigid-body motion within Ω [52, ch. 1.5], i.e.

A(x) = UΩ + ωΩ × x , x ∈ Ω . (61)

UΩ and ωΩ are constants that do not depend on x. The symbol “×” denotes the cross product.
Furthermore, using the periodicity of A, we immediately find ωΩ = 0.

Next, we recall that A is continuous across the objects’ surfaces, i.e. A|∂O = A|Ω = UΩ, to
derive

NO∑
k=1

∮
∂Ok

fA,−j (x)Aj(x) dS(x) = UΩ
i

NO∑
k=1

∫
Ok

∂σAji(x)
∂xj

dx3 = 0 . (62)

Here we used the definition of the traction from eq. (7), the divergence theorem, the symmetry
of the stress tensor and finally the Stokes equation (52). Summing expression (56b) over all
objects, using eq. (62) and that the integral arguments on the right-hand side of eq. (56b) are
positive, we find EAij (x) = 0 for all x ∈ Ok, k = 1, . . . , NO and i, j = 1, 2, 3. Hence, A must
also represent rigid-body motion within every object:

A(x) = U (k) + ω(k) × x , x ∈ Ok , k = 1, . . . , NO . (63)

19



The 2NO constants U (k) and ω(k) could in principle be different for each k. But because of the
continuity of A across ∂Ok we have U (k) = UΩ and ω(k) = 0 for all k = 1, . . . , NO. All in all,
we derived the following explicit expression

A(x) = UΩ = const , x ∈ R3 (64)

for the artificial field A.
Next, we exploit the Stokes equation (51) which immediately leads to ∇PA(x) = 0 for

x ∈ R3 \ ∂{O(α)}. The pressure associated with A is thus a simple constant in every connected
set, which we will write as

PA(x) =
{
−CΩ if x ∈ Ω,
−Ck if x ∈ Ok, k = 1, . . . , NO,

with x ∈ Γ \ ∂O . (65)

Only the values within the unit cell will be needed (the pressures within the periodic images
might be different at first). The stress tensor is thus

σAij (x) =
{
CΩδij if x ∈ Ω,
Ckδij if x ∈ Ok, k = 1, . . . , NO,

with x ∈ Γ \ ∂O . (66)

Taking the limit onto the surfaces from the outside and inside and multiplying them with the
outer normal vector gives the tractions fA,+ and fA,−. By substituting them into eq. (54a) we
obtain

aj(x) = C̃knj(x) , x ∈ ∂Ok , k = 1, . . . , NO , j = 1, 2, 3 , (67)

with the constants C̃k := −1+λ̄Ok
8πµ (CΩ−Ck) for k = 1, . . . , NO. This result is somewhat remark-

able: Every solution to the adjoint equation (46) must be of the form given by equation (67).
It also means that the global linear dependency of the pressure that appears in eq. (50) via the
Green’s function drops out, which is consistent with expression (65).
Now, the initial assumption was that there is a non-trivial solution to the adjoint equation.

Since all solutions are of the above form (67), there must exist one k′ ∈ {1, . . . , NO} with
C̃k′ 6= 0. We thus substitute it into eq. (46) for x0 ∈ ∂Ok′ , and with the help of equation (20)
arrive at

1 =
1− λ̄Ok′

1 + λ̄Ok′

(
1−

∮
∂Ok′

z
(k′)
l (x)nl(x) dS(x)

)
. (68)

The Wielandt deflation term can be active (z(k′) 6= 0) or inactive (z(k′) = 0) for a particular
object. If it is active, condition (44) and λ̄Ok′ > 0 immediately lead to the contradiction 1 = 0.
On the other hand, if the term is inactive, equation (68) can only be satisfied for λ̄Ok′ = 0. But
this means that by definition Ok′ is a bubble, where we demanded that the Wielandt term is
always active. Thus we also get a contradiction. This means that our initial assumption (that
there is a non-trivial solution to the adjoint equation) must have been wrong, i.e. equation (46)
only has the solution a ≡ 0.

To complete the proof, we use the Fredholm alternative from theorem 1. The homogeneous
equation therefore also has only the trivial solution, and consequently the full FBI equation (37)
has exactly one solution (existence and uniqueness). This holds as long as the Wielandt term
exists for objects Ok with λ̄Ok

= 0. Note that for λ̄Ok
> 0 the Wielandt term does not matter

concerning uniqueness of the solution, but may be used to accelerate the numerical convergence
as remarked before. We also mention that the above procedure carries over to other systems
and Green’s functions such as for an infinite domain without any essential changes.
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2.4. Bubble model details
2.4.1. The traction and the constitutive law

As stated in section 2.2 we prescribe a certain outer traction f+ on the surface of the bubbles.
This is necessary because the introduction of the traction jump 4f (as is done for capsules) in
the BI equation would require the application of the Stokes equation at the inside [compare
sec. 2.2.1 and 52, pages 37 and 143] which is not possible because the inside is a compressible
fluid with very low viscosity. Due to this very low viscosity, however, we can neglect the shear
stress acting on the inside surface of the bubbles and only the inner pressure PBk

will be of
relevance. Hence, the outer traction is expressible as [44, 98]

f+(x) ≈ 4f(x)− PBk
n(x) , x ∈ ∂Bk , k = 1, . . . , NB . (69)

Note that the minus before the pressure comes from the fact that f+ represents the force
exerted by the fluid on the membrane, and not vice versa. The traction jump 4f must be
determined by some constitutive law for the interface, such as the ordinary Young-Laplace
equation

4f(x) = 2γBk
H(x)n(x) , x ∈ ∂Bk , k = 1, . . . , NB . (70)

H is the mean curvature, taken to be positive for a sphere. This equation is valid for a spatially
constant surface tension γBk

, i.e. for interfaces between two immiscible substances. Additional
surfactants can lead to a position dependency and non-zero tangential components [49].

2.4.2. Imposing bubble volume changes

We can now prescribe a certain traction jump and an (in general time dependent) internal
pressure to model an oscillating bubble. The traction can then be computed via equation (69)
and substituted into the FBI equation (1). This should work fine in principle. However, after
the substitution we observe that the PBk

n term simply drops out due to equation (21), leaving
us unable to enforce a certain pressure and thus any volume changes. This deficiency of the
FBI equation is because of the fact that the single-layer potential is incapable of producing any
flow with sinks or sources [52, ch. 4.1]. This in turn originates from the incompressibility (16)
of the flow produced by the Stokeslet.

Rather than prescribing a certain internal pressure we therefore prescribe a certain flux QBk
.

This is easily implemented as the flux appears explicitly in the patched FBI equation (1). For
the purpose of solving eq. (1) we then set f+ = 4f .

2.5. Numerical implementation
Our volume-changing object boundary integral method (VCO-BIM) solves the FBI equation (1)
numerically. For this, we discretize the surfaces of all objects with flat triangles. Dynamic
refinement and coarsening via Rivara’s longest-edge bisection algorithm [99] is employed (see the
supplementary information for some examples). Object centroids and volumes are calculated
as explained by Zhang and Chen [95]. Integrals are computed with a standard Gaussian
quadrature [100], where quantities at points within the triangles are obtained from their nodal
values via linear interpolation [52]. Surface integrals where the Green’s functions are singular
are treated in polar coordinates in case of the single-layer integrals [101], and by adapting the
usual surface subtraction scheme for the double-layer integrals [49, eq. (8.8)]. In both cases the
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Green’s functions of the infinite domain from eq. (33) are used to eliminate the singularities
[40, 41] since they are faster to calculate than their periodic counterparts and coincide with
them for x ≈ x0. Nearly singular behavior (occurring when objects come near to each other)
is additionally removed for the double-layer potentials [40]. After discretization, equation (1)
becomes a linear system that we solve with GMRES [102], bypassing the need to explicitly
construct the system’s matrix. We remark that BiCGSTAB [103] was found to be slower in
most cases.
The computation of the discretized integral equation with the periodic Green’s functions

from equations (14) and (18) is accelerated by two different means. First of all, the Ewald
decomposition by Hasimoto [58] is used to split the expressions into fast converging real and
Fourier space parts, also see [43]. The final expressions are given by Zhao et al. [42, ch. 5.1].
Second, we employ the smooth particle mesh Ewald method (SPME) to further accelerate the
computation of the Fourier parts via fast Fourier transforms [104].

The time evolution of the objects is obtained by solving the kinematic condition

dx
dt = u(x) , x ∈ ∂O (71)

for each mesh node by some standard explicit ODE integrator, such as Runge-Kutta or the
adaptive Bogacki-Shampine [105] and Cash-Karp methods [106]. Unfortunately, the average
volume of the objects would slowly shrink with time due to unavoidable discretization errors.
To counter this, we employ two different strategies. First, we use the discretized version of the
no-flux condition

∮
u · n dS = 0 for objects with zero flux. This equation effectively represents

a hyperplane. We then rotate the solution vector onto this hyperplane. This procedure is
similar to Farutin et al. [107, eq. (43)]. Second, to eliminate the volume drift completely, we
additionally employ the rescaling method as explained by Farutin et al. [107, eq. (63)].

Bending forces for capsule-like objects follow the Canham-Helfrich model [108, 109]. Various
numerical implementations are explained in the article by Guckenberger et al. [110] and reviewed
by Guckenberger and Gekle [111]. Shear and area dilatation elasticity of cells and capsules is
implemented as detailed by Krüger [112] and Guckenberger et al. [110]. Large distortions of the
mesh are prevented automatically in this case as the forces depend explicitly on the triangle
deformations. Bubble surfaces, on the other hand, do not feature in-plane tensions. This results
in their mesh becoming inhomogeneous very quickly, leading to numerical instabilities. To
prevent this, we observe that the nodes need to follow the fluid velocity only in the normal
vector direction since any tangential displacement leaves the bubble shape unchanged. Thus,
an artificial tangential displacement of

δx
(a)
i,α+1 = ζ

3∑
j=1

(δij − ni,αnj,α)
∑
b(x

(b)
j,α − x

(a)
j,α)wabα∑

bw
ab
α

, i = 1, 2, 3 (72)

can be applied after every time step without modifying the physical behavior. We apply this
formula in an iterative process, indicated by the Greek subscript α. The superscripts a and b
denote different nodes, the Latin subscript indicates a certain Cartesian component and the
sums go over the first ring of neighbors b of node a. The parameter ζ = 0.3 controls the stiffness
of the scheme. The iteration stops once the maximal displacement falls below a predefined
threshold. Finally, the weights are chosen as wabα = Aabα /|x

(b)
α −x(a)

α |, where the sum of the areas
Aabα of the two triangles containing nodes a and b tends to homogenize the triangle areas, and
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Effective surface tension ɣ

0
0

ɣsoft

ɣstiff

Rsoft RstiffRmin Rmax

of lipid-coated microbubbles

(a)

(b)

Flow

Figure 2: Simulation setup. (a) Snapshot of the large simulation containing 30 red blood cells and two microbubbles.
Periodic boundary conditions are used, i.e. the left and right non-translucent cylinders are periodic images of the
center one which has a length of 48 µm in this case. (b) Sketch of Marmottant et al.’s model for lipid coated
microbubbles [35, 36]. The effective surface tension γ is a function of the effective radius which varies between
Rmin and Rmax during an ultrasound period. The bubble is in the soft buckled state for Reff 6 Rsoft and in the
stiff ruptured state for Reff > Rstiff , as indicated by the two inset sketches.

the denominator tries to keep possibly applied refinement local to where it had been applied. A
similar approach has been used by Farutin et al. [107, eq. (59)].
We tested our code extensively by comparing the integrals with analytically known values

[compare 107, sec. 8.3], as well as by studying usual benchmark systems such as the deformation
of a capsule in an infinite shear flow [110]. The code was also successfully applied to the diffusion
of particles near elastic membranes [113–118] and was used to compare with experimental
obtained shapes of red blood cells in microchannel flows [119]. Further verifications can be
found in the supplementary information (SI). We parallelized our code with OpenMP and MPI,
and we use explicit SIMD vectorization via the Vc library [120] in some core parts.

3. Ultrasound-triggered margination of microbubbles
We now use our VCO-BIM as introduced in the previous section to investigate the behavior
of ultrasound contrast agents (lipid-coated microbubbles) in microcapillary blood flow. Our
numerical simulations consist of two ultrasound contrast agents and several red blood cells within
a cylindrical blood vessel as depicted in figure 2 (a). The lipid coating of the microbubbles leads
to a radius-dependent effective surface tension which will be modeled as detailed in section 3.1.
Red blood cells and the remaining ingredients are described in section 3.2. Our central result,
namely the occurrence of ultrasound-triggered margination (UTM) is given in section 3.3.

3.1. Lipid coated microbubbles
3.1.1. Surface forces

The coating of microbubbles leads to deviations from the simple coupling between bubble volume
and external pressure expected from the expansion/compression of an ideal gas [35, 36, 39, 121–
123]. There are various models available for varying types of surface coatings that produce such
nonlinear responses [e.g. 28, 124]. One that incorporates the special properties of phospholipid
coated bubbles (i.e. the size-dependent state of the coating) was presented by Marmottant
et al. [35], providing a suitable description for their behavior [24, 28, 36, 39, 122, 123]. The
major ingredient is the introduction of an effective surface tension that depends nonlinearly
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on the bubble’s size. Such a size dependency is the most important aspect of the model for
the purpose of margination. Hence, a more elaborate surface model including surface viscosity
[e.g. 125] is not required here. The relation which we employ can be divided into three major
regions [35, 36] as illustrated in figure 2 (b):

1. In the high compression regime, the area available per lipid molecule is smaller than its
extent, leading to pronounced buckling as observed by ultrahigh-speed imaging [39]. This
is modeled by an effective surface tension of γsoft ≈ 0 below an effective radius Rsoft [36].
The bubble is highly deformable in this state [35, 38].

2. With increasing radius, a very narrow elastic regime occurs, extending up to a maximal
radius Rstiff .

3. Above Rstiff the shell ruptures, leaving floating rafts of lipids on the surface [35, 126].
This leads to the very high surface tension γstiff of a direct air-water interface.

Due to the smallness of the second regime [36], we set in the following Rsoft = Rstiff such
that the effective surface tension in our case can be written as

γ(Reff) =
{
γsoft if Reff 6 Rsoft,

γstiff if Reff > Rsoft,
(73)

where Reff := 3
√

3V/(4π) is the instantaneous effective radius and V the bubble volume. The
traction jump then follows from the Young-Laplace equation (70).
The equilibrium radius R0, i.e. the radius assumed when no ultrasound is present, can be

located at different positions relative to the transition radius Rsoft depending on the process of
bubble preparation. Most importantly, it was shown that they can be created in the buckled
state (R0 6 Rsoft) [38, 122, 126] as desired for safe transport by default within the blood vessels
[37].

3.1.2. Modeling the effect of an acoustic source

Because we are interested in the margination behavior, the exact form of the oscillations
is expected to be irrelevant. We therefore prescribe the flux of the i’th bubble as Qi(t) =
Ai sin(2πft) to model the effect of an external acoustic source. Here, t is the time, Ai the flux
amplitude and f the frequency. This results in a volume oscillation of

Vi(t) = V
(0)
i +Ai/(2πf)[1− cos(2πft)] (74)

for the i’th bubble, with V (0)
i being the initial volume at t = 0. To conserve the total outer fluid

volume as required by eq. (36), both bubbles are set to oscillate out-of-phase, i.e. A1 = −A2.
Although not being entirely realistic, it is mandated on a very fundamental level by the periodic
boundary conditions and the incompressibility of the ambient fluid. We do not expect that
this small restriction affects the validity of the presented conclusions since (i) bubble-bubble
interactions are strongly shielded by the RBCs and (ii) margination hinges upon the stiffness
variations of the individual bubbles and is therefore independent of the phase of the oscillations.

Continuing, we emphasize that we impose only the instantaneous bubble volume and not a
spherical shape. Hence, the bubbles are still deformable, a property which is crucial for the
hydrodynamic interaction with the RBCs.
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The most important quantity in the present context is the ratio of the stiff to soft duration
which we denominate as δ = T+/T−. Here, T+ is the time spent in the stiff state (i.e. Reff > Rsoft)
and T− the time in the soft state (Reff 6 Rsoft). Since margination would trivially be expected
for δ � 1, we concentrate on 0 6 δ 6 1 in the present study, in agreement with experiments
[35, 36, 39, 121]. We remark that δ does not depend on the frequency f .

3.1.3. Bubble parameters

In our simulations we set the surface tensions in the soft and stiff state to γsoft = 0.5κS and
γstiff = 10κS, respectively. κS is the shear modulus of the red blood cells (see below). These
choices sensibly describe the stiffness of the bubbles relative to RBCs regarding margination
while at the same time ensuring numerical stability. Realistic values of γstiff = 7× 10−2 N/m
and γsoft ≈ 0 [36, 39] would lead to a numerically very stiff problem and consequently require
extremely small time steps. The supplementary information shows that γsoft = 0.1κS and
γstiff = 25κS do not change the results significantly. Furthermore, we fix Rmin = 1.7 µm and
R0 = Rsoft = 2 µm which are typical values for microbubbles [24, 36, 126] (using R0 = 1 µm
leaves the results qualitatively unchanged, see SI). Taking δ as the major control parameter,
Rmax and the amplitudes Ai are uniquely determined via the prescribed volume oscillation
law (74). Assuming an ideal gas within the bubbles and an atmospheric pressure of 100 kPa, a
value of δ = 1 then corresponds to an acoustic pressure amplitude of around PA ≈ 45 kPa, in
agreement with experimentally used values [36].
In most current applications, ultrasound pressure amplitudes and frequencies are in the

kilo-pascal and mega-hertz range, respectively [24, 25]. Such values lead to strong primary
and secondary radiation forces [127, 128] making the bubbles agglomerate in a small spot on
the vessel wall opposite of the ultrasound transducer [23, 129, 130]. This strong localization
is highly undesirable for drug delivery applications where a uniform bubble distribution over
the entire vessel wall is required. In contrast, we will show below that ultrasound-triggered
margination is able to reliably achieve an isotropic distribution if the ultrasound parameters are
chosen such that radiation forces become subdominant. For PA ≈ 45 kPa we therefore keep the
acoustic frequency at f = 1 kHz in the following. The magnitude of the primary radiation force
is then typically of the order of |F rad| ≈ 10−15 N, meaning that it plays only a secondary role
as shown explicitly in the SI. We consequently neglect it in what follows. In order to exploit
UTM also at higher frequencies, one can reduce PA as exemplified in the SI where we consider
f 6 10 kHz for PA ≈ 6 kPa.

3.2. Blood flow in capillaries
3.2.1. Blood flow constituents

We model the blood flow by explicitly resolving the red blood cells and treating the surrounding
blood plasma as a Newtonian fluid [131]. For our simulations we use mostly 15 RBCs that
are distributed randomly within the blood vessel if not noted otherwise. Each RBC has an
initial large radius of RRBC = 4 µm [82, 132]. Continuing, the RBC shear elasticity is modeled
via Skalak’s constitutive energy [133] with a shear modulus of κS = 5× 10−6 N/m [82, 134]
and the typical discocyte shape as the reference geometry. This model also includes an area
dilatation modulus that is set to κA = 10κS. Furthermore, we additionally introduce an extra
surface dilatation energy Ea = (κa/2)(S − S0)2/S0 [112] with the corresponding area dilatation
modulus κa = 10κS, the instantaneous surface area S and the reference surface area S0. This
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leads to area deviations of typically . 4 %. Moreover, bending forces are modeled according
to the Canham-Helfrich law [108, 109, 111] with a bending modulus of κB = 2× 10−19 N m
[82, 135] and the spontaneous curvature set to zero. For numerical efficiency we employ the
usual approximation that inner and outer viscosities are equal [3, 64, 82, 112], i.e. the viscosity
ratio is λRBC = 1. As a result, any double-layer integrals over the RBC surfaces vanish, and
Wielandt deflation terms cannot appear for RBCs (compare section 2.3.3). Nevertheless, both
are still present for the bubbles.

The periodic vessel has a length of usually 24 µm and a radius of RVessel = 11 µm. Together
with the 15 RBCs this results in a hematocrit of around 16 %, a typical value encountered
in capillaries [136, 137]. The larger simulation from figure 2 (a) as well as higher hematocrit
values lead to the same results which are presented below and in the supplementary information.
Furthermore, one possibility for the boundary condition of the vessel wall would be to set
its velocity to zero. This, however, leads to a mixed kind Fredholm integral equation. As
explained in sec. 2.3.1, no general mathematical theory exists and this type can be rather
performance-intensive although it might work in practice. We therefore follow Freund [1] and
fix the wall’s nodes xi via springs to their original position x(0)

i , leading to a traction jump
of 4f = κW(xi − x(0)

i ), where κW = 6.25× 106 N/m3 is the spring constant. Increasing κW
by a factor of 5 does not change results qualitatively as shown in the SI. Thus we end up
with a Fredholm integral equation of the second kind having exactly one solution as proven in
section 2.3.4.

3.2.2. Hydrodynamics

We use our VCO-BIM for 3D periodic domains as presented in section 2 to solve the Stokes
equation. The core of this method is equation (1) which we solve for an imposed average
flow chosen such that the maximal flow velocity in the middle of the vessel is roughly umax ≈
4.7 mm/s, if not noted otherwise. This value matches with physiological flow velocities in
capillaries and arterioles [138].

The Stokes equation is a good approximation if the Reynolds numbers are much smaller than
unity. For the translational motion we find for our system ReT = 2RRBC umaxρ /µ ≈ 0.03� 1,
where µ = 1.2× 10−3 kg/(s m) is the dynamic viscosity of blood plasma [139] and ρ ≈ 103 kg/m3

its density. A different Reynolds number can be defined based on the radial oscillations as
ReR = (2R0)2ρf/µ. For f 6 10 kHz (as used in the SI) this results in ReR < 0.07 � 1. We
thus conclude that the Stokes equation can faithfully capture the considered RBC and bubble
interactions.

3.2.3. Numerical procedure

The general methodology of our numerical implementation was already explained in section 2.5.
Here we only mention the remaining aspects that are specific to the present application. The
triangle count for the blood vessel is 630 for the 24 µm long channel. Rivara’s longest-edge
bisection algorithm [99] is used to refine high curvature and close contact regions for the
dynamic objects. Hence, the number of triangles varies over time with typical averages of
around 1500 for the bubbles and 780 for the RBCs. See the SI for some illustrations. Artificial
overlapping between the objects within the channel is further suppressed by the introduction of
a short-range repulsive potential ERep(rij) = [b/(rij − lm)] exp [lc/(rij − lc)] [140, 141] with rij
denoting the distance between two nodes (vertices), lm being the minimal possible distance
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and lc the distance where the potential smoothly drops to zero. We choose lm = 0.01RRBC and
lc = 0.125RRBC, the latter being of the order of the typical edge length of the initial bubble
meshes.
The traction jump on the RBCs for the elasticity and dilatation contributions is computed

by differentiating the energies with respect to the mesh vertices, as explained by Krüger [112]
and Guckenberger et al. [110, sec. 4.2]. The repulsive potential is handled in the same way.
Bending forces (for the RBCs) and the mean curvature (required for the bubbles, cf. eq. (70))
are obtained via Method C as given by Guckenberger et al. [110]. Despite being less precise
than some alternative methods described in that work, it proved to be more stable than the
others.

SPME errors for the computation of the Green’s functions are kept below . 0.01 %. Increasing
the precision by one order of magnitude did not change the results (see SI). The Gaussian
quadrature rules for the integrals use 7 Gauss points per triangle for the bubbles and the blood
vessel and 4 points for the RBCs. We solve the integral equation via GMRES with a residuum
of max. 10−4. Furthermore, the time evolution from eq. (71) is obtained by the adaptive
Bogacki-Shampine method [105] with the relative tolerance fixed to 10−5 and the absolute
tolerance set to 10−4RRBC [142]. We use the volume rescaling approach for bubbles and RBCs
and additionally the hyperplane method for RBCs to handle any artificial volume drift as
explained in section 2.5. No special mesh control scheme was necessary for the vessel and the
RBCs due to the nature of the prescribed forces, but for bubbles we use equation (72) where
the iteration stops once the maximal displacement falls below 10−4RRBC. Typical simulations
times are in the 1 – 2 weeks regime on a recent 20 core Intel system.

3.3. Results and discussion
3.3.1. Microbubbles with constant surface tensions

In order to illustrate the general effect of margination, we first consider the case when the
microbubbles are prepared once in the soft and once in the stiff state. Figure 3 (a) shows two
simulations without any volume oscillations. The case γ = γsoft corresponds to coated bubbles
that are always in the soft state. Thus, they have a deformability comparable to the RBCs
and remain in the center of the blood stream together with the erythrocytes. On the other
hand, setting γ = γstiff models pure bubbles that are much stiffer than the RBCs. Hence, they
quickly marginate isotropically to the vessel wall. Similar observations are made in figure 3 (b)
for bubbles oscillating with a frequency of f = 1 kHz while keeping the effective surface tension
constant. These results demonstrate that the volume oscillations by themselves do not strongly
affect particle migration for the presently chosen parameters.

3.3.2. Lipid coated microbubbles with radius-dependent surface tension

To demonstrate ultrasound-triggered margination, we consider two lipid coated bubbles whose
shells are modeled with an effective surface tension as described by equation (73) and that
are prepared in the soft state (δ = 1, Reff = Rsoft). Figure 4 (a) depicts the bubbles’ radial
trajectories from a simulation where initially no ultrasound is applied. The bubbles are
preferably located in the RBC rich core, in agreement with figure 3 (a) and experimental
observations [37]. This allows for secure travel through the vascular system. Once the volume
oscillations are activated after around 4.0 s to model an ultrasound source, the bubbles oscillate
periodically in stiffness due to the lipid coating that is modeled according to equation (73).
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Figure 3: Margination behavior of purely soft and purely stiff non-oscillating (a) and oscillating (b) microbubbles.
I.e. γ = const in all cases. We depict the radial positions of the centroids of two bubbles with constant effective
surface tensions in blood flow as a function of time. The surface tensions are set to γ = γsoft = 0.5κS (red/orange)
and γ = γstiff = 10κS (black/gray). For (b), bubbles oscillate with a frequency of f = 1 kHz, leading to a
variation of Reff between 1.7 µm and 2.075 µm. Curves for different γ constitute independent simulations. The
red blood cells, shown as light gray lines, illustrate the cell-free layer between 7 µm and the wall. The vessel
radius is 11 µm, the hematocrit is fixed to 16 % and the maximal flow velocity is umax ≈ 4.7 mm/s. The soft
bubbles (γ = γsoft) remain in the center, whereas the stiff bubbles (γ = γstiff) show margination.
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Figure 4: Ultrasound-triggered margination. (a) Radial positions of the centroids of two microbubbles coated
with lipids, modeled according to Marmottant et al.’s law [35, 36]. Since the ultrasound is off at the beginning,
the bubbles are soft and thus remain in the vessel interior (effective radius Reff = 2 µm). When the oscillations
are switched on at ≈ 4 s, ultrasound-triggered margination leads to rapid migration to the vessel wall. Here,
δ = 1, i.e. the bubbles are stiff for the first half of the ultrasound period and soft during the second one with
their effective surface tension varying in the range γ ∈ [0.5; 10]κS. The effective radii alternate between 1.7 µm
and 2.23 µm in each period. See the supplementary material for a movie. (b) Average radial positions of the
oscillating bubbles and the RBCs for several different values of δ. The rightmost point corresponds to the limit
δ →∞ (i.e. always stiff) from fig. 3 (b). Error bars are determined as explained in the main text and the SI.
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This is in contrast to figure 3 where the surface tension remains constant. Most importantly,
we observe fast migration towards the vessel wall within less than one second (see the SI for
a movie). This time frame corresponds to a traveled distance of less than 4 mm, highlighting
the rapidity of the effect. The cause of the fast margination is the lipid shell: As discussed
in the previous section, the coating leads to a stiffening during the high-pressure state of the
ultrasound signal and a corresponding softening during the low-pressure state [35, 36]. As
figure 4 (a) clearly demonstrates the overall behavior is dominated by the stiff stage, as will be
further analyzed below.

We continue to demonstrate the robustness of ultrasound-triggered margination by considering
microbubbles that are very soft in equilibrium. The bubbles then spend a much longer portion
of the ultrasound period in the soft than in the stiff state (δ < 1). Figure 4 (b) depicts the
results. The error bars are determined by considering first the minimal and maximal centroid
position of all RBCs/bubbles as a function of time for t > 1 s or after definite margination,
second a subsequent temporal average and third a weighted average over simulations with
different starting configurations. This is similar to the procedure by Müller et al. [143] and
is explained in more details in the supplementary information. Figure 4 (b) shows that the
bubbles are still preferably located at the outside of the RBC rich core for δ < 1, even for
ratios as low as δ ≈ 0.2. The margination is completely suppressed only at small values such
as δ ≈ 0.1 where the soft time is around 10 times longer than the stiff time. The results from
the SI for PA = 6 kPa show a transition at δ ≈ 0.3 indicating that the precise location of the
transition depends on the details of the system setup but nevertheless happens for δ � 1. Thus
we can conclude that reliable margination is observed if the soft time is at most three times
larger than the time in the stiff state (δ & 0.3).
The effect that small values of δ are sufficient to trigger ultrasound-triggered margination

can be understood qualitatively: During the soft state, shearing by the flow and collisions with
red blood cells cause deformations of the bubbles. Both are comparably slow processes. During
the subsequent stiff stage, however, a high surface tension forces the deformed object back to a
spherical shape much more quickly. More quantitatively, the typical relaxation time towards
the spherical rest shape in the stiff state can be estimated as τstiff = 2Rstiffµ/γstiff ≈ 0.1 ms.
On the other hand, the time required by the flow to deform the bubble away from the spherical
shape in the soft state can be estimated by assuming a simple Poiseuille profile with the center
flow velocity umax = 4.7 mm/s. This leads to a shear rate of s ≈ 544 s−1 if the bubble is
positioned one diameter (2Rsoft) away from the wall. Hence, τdeform = 1/s ≈ 1.8 ms, which
is about one order of magnitude larger than the relaxation time scale τstiff in the stiff state.
This explains why the latter dominates the margination behavior. We remark that the ratio
τstiff/τdeform is formally equivalent to the capillary number Ca = 2Rstiffsµ/γstiff for the bubbles
in the stiff state, i.e. Ca determines their behavior while being stiff. The interpretation of the
ratio τstiff/τdeform, however, is fundamentally different here, as it makes a comparison between
the two different states rather than making a statement about only one state.
The above argument can be explicitly confirmed by considering an oscillating microbubble

in a simple linear shear flow in an infinite domain simulated with VCO-BIM (VΓ → ∞,
compare section 2.2.5). As a measure of deformation, we extract the asphericity b :=[
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2] /(2R4

g) from the shape, where R2
g := λ1 + λ2 + λ3 is

the squared radius of gyration and λ1, λ2 and λ3 are the eigenvalues of the gyration tensor [15].
For reference, the discocyte equilibrium shape of an RBC leads to b ≈ 0.15. Figure 5 (a) shows
that the bubble remains almost spherical for δ’s as low as 0.1, meaning that the bubble is stiff
only during ≈ 9 % of the ultrasound period. Only below a rather sharp threshold at δ ≈ 0.05
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Figure 5: Average asphericities of oscillating lipid coated microbubbles. (a) The left figure shows the result for
a single microbubble in an infinite shear flow with shear rate s = 544 s−1 as a function of δ. At δ ≈ 0.05 the
deformation increases sharply while for δ > 0.1 almost no deformation is seen. The limiting value δ → ∞ is
shown as a red solid line at the bottom. The surface tension varies in γ ∈ [0.5; 10]κS and the oscillation frequency
is f = 1 kHz. Error bars indicate the minimal and maximal asphericities during one ultrasound period. The two
inset snapshots show the bubbles with their maximal deformation for δ = 0.032 (left) and δ = 1 (right). (b)
Asphericity of the bubbles from figure 4 (a) averaged over consecutive time intervals of 0.5 s.

the bubble behaves akin to a truly soft object exhibiting strong deformation. Note that this
value matches well with the ratio τstiff/τdeform ≈ 0.056, and reasonably well with the bubbles’
transition from the inner core to the outside in figure 4 (b). Furthermore, the value b ≈ 0.015
at δ = 1 approximately agrees with the asphericity observed for the simulation in figure 4 (a)
after the ultrasound was switched on, as depicted in figure 5 (b).

3.3.3. Further investigations

Pure margination is an isotropic effect: There is no preferred initial migration direction
nor a preferred position close to the wall. We exemplify this in figure 6 where we show
the trajectories of migrated bubbles from several simulations representing different system
realizations. Obviously, no specific accumulation point exists. This is in contrast to migration
induced by buoyancy or radiation forces at much higher frequencies [23, 128–130]. Note that the
inclusion of radiation forces for the chosen parameters leaves the qualitative results unchanged,
as described in detail in the SI. The major influence on figure 6 comes therefore from the initial
conditions and the length of the simulations.
Figure 7 (a) shows that increasing the frequency from f = 1 kHz to 10 kHz leaves the

qualitative results for the radial position unchanged when radiation forces are neglected. Most
interestingly, however, the asphericity is roughly reduced by half in case of the faster oscillations
(figure 7 (b)). The reason is that for 10 kHz less time within one period is available to deform
the bubbles before the stiff state takes over, as suggested by the above time scale estimates.
This strongly indicates that higher frequencies reinforce the effect that small values of δ’s are
sufficient to obtain ultrasound-triggered margination. Even more, this serves as a hint that the
effect of UTM, which has been overlooked so far, might have provided a noticeable contribution
to the effectiveness of microbubbles for targeted drug delivery observed in recent in-vivo and
clinical studies that used higher frequencies [25, 34].

Continuing, we demonstrate that UTM intrinsically hinges on the presence of the red blood
cells. If they are removed, the result in figure 8 (a) is obtained, showing clearly that oscillating
lipid coated microbubbles move towards the center of the channel for δ = 1. This is in notable
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Figure 6: Polar plot of several bubble trajectories (i.e. as viewed from the outlet). The figure shows the δ = 0.74
and δ = 1 simulations used for figure 4 (b), representing different system realizations. Trajectories only shown
for t > 1 s or after definite margination. Rare short-lived migration events to the inside occur. Each bubble in
each simulation is shown in a different color. The outer gray dashed line depicts the vessel radius.
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Figure 7: Influence of frequency: Behavior of two oscillating lipid coated microbubbles for δ = 1 and a hematocrit
of 16 %, once for a frequency of f = 1 kHz and once for 10 kHz (two distinct simulations). umax ≈ 4.7 mm/s.
(a) Radial positions of the centroids. The red blood cells are shown in light gray. (b) Corresponding microbubble
asphericities averaged over consecutive time intervals of 50 ms.
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Figure 8: Influence of hematocrit: (a) Only bubbles (Hematocrit = 0). (b) Average radial position for δ = 1 as a
function of hematocrit. Values and error bars extracted from several simulations as in figure 4 (b).

contrast to figure 4 (a), where rapid margination for the same set of parameters is observed.
Hence, neglecting the influence of the red blood cells in in-vitro experiments can easily lead to
conclusions that no longer hold for the in-vivo case. On the other hand, with a finite hematocrit,
margination is always observed in the sense that the RBCs are located at the interior and the
bubbles form an outer layer (figure 8 (b)). The position of this outer layer depends on the
size of the RBC-rich inner region which grows when more RBCs are present [143], with the
average radial position being reminiscent of a pitchfork bifurcation. The reason is that the
RBCs migrate to the center and push the bubbles to the outside because the latter are seen as
stiffer on average as already described above.

Moreover, we depict in figure 9 the influence of the flow velocity. Margination still occurs in
all cases, but higher velocities tend to decrease the radial position of the marginated bubbles.
The effect, however, is comparably small. The upper horizontal axis displays a corresponding
effective non-dimensional shear rate defined here by

s∗ := umax
2RVessel

µD3
RBC
κB

(75)

with an effective RBC diameter DRBC :=
√
ARBC/π and the RBC surface ARBC ≈ 137 µm2.

This definition is similar to the one by [143] except that we use the maximal instead of the
average flow velocity. Hence, we find qualitative agreement with their results for spherical rigid
particles [compare fig. 3a in 143]: Margination is only a little affected by the shear rate if it is
high enough.

Finally, we note that the effect of UTM does not change significantly if the effective surface
tension in the soft state is decreased to γsoft = 0.1κS or the stiff tension is increased to
γstiff = 25κS, if the size of the bubbles is halved to R0 = 1 µm, if the initial particle distribution
is varied or if the simulation box length is doubled as shown in the SI. Moreover, the average of
the nodal velocity of the vessel wall (sec. 3.2.1) after a short initial startup phase is . 0.08umax
and the nodes move less than 0.1RRBC, indicating that the spring wall sensibly replaces a
completely stationary wall. Nevertheless, we also show in the SI that the results do not change
if the vessel wall is made 5 times stiffer.

32



 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

 0  100  200  300  400  500  600  700

A
ve

ra
g
e 

ra
d
ia

l 
p
os

it
io

n
 [

µ
m

]

umax [mm/s]

Non. dim. shear rate s*

Vessel
RBCs

Bubbles

Figure 9: Influence of the velocity for δ = 1 and a hematocrit of 16 %: Average radial position as a function of
the flow velocity. Values and error bars extracted from several simulations as in figure 4 (b).

4. Conclusion
In the first part of our work we developed an extended boundary integral method to simulate
volume-changing objects such as microbubbles in a 3D periodic domain (VCO-BIM). In contrast
to all other commonly used “capsule-like” objects (vesicles, cells, drops), these bubbles contain
a compressible gas with very low viscosity. As a consequence their volume can change as a
function of time. This behavior leads to two additional terms in the boundary integral equations
which arise from (i) integrals over the unit cell and (ii) ensuring uniqueness of the solution. We
showed that the latter, which can be seen as part of a Wielandt deflation procedure, is optional
for capsule-like objects with a finite inner viscosity but becomes a necessary ingredient for
bubbles. To this end, we proved that the resulting Fredholm integral equation has exactly one
solution for an arbitrary number of bubbles and capsule-like entities with arbitrary viscosity
ratios. Although periodic boundary integral methods for cells and capsules have been amply
used in the past, such a proof has so far not appeared in the literature. The proof can be easily
adapted for the case of other Green’s functions, e.g., in infinite domains.
In the second part we used our method to show that lipid-coated microbubbles possess

unique and highly desirable properties which are not found for other drug delivery agents.
During transport from the injection site to the target organ, with no ultrasound present, the
bubbles behave as soft objects akin to red blood cells, traveling near the center of blood vessels.
Application of a localized ultrasound at the target region then causes the bubbles to alternate
between a soft and a stiff state. This leads to their isotropic margination towards the vessel
wall within less than one second in the presence of red blood cells. Surprisingly, margination
even happens when the time spent in the stiff state is more than three times smaller than
the time in the soft state. We explain this observation by the fact that the effective surface
tension (leading to a spherical shape during the stiff stage) acts on much shorter time scales
than the surrounding flow (which deforms the bubble during the soft stage). This, together
with the presented studies regarding frequency, hematocrit and flow velocity indicates that
ultrasound-triggered margination is a robust effect. Given that it leads to a uniform bubble
distribution on the vessel wall while other targeting mechanisms such as radiation forces often
cause large inhomogeneities, the here identified effect might open a promising route to design
novel drug delivery systems in the future.
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A. List of important symbols
For the reader’s convenience, we provide in table 1 a short overview of the important symbols
used in section 2 together with their point of definition.

B. Objects overlapping with the unit cell boundary
Section 2 assumed that all objects are completely located within the unit cell Γ. However,
satisfying this condition is impossible for dense suspensions even for a single time step, and
because flowing objects regularly leave and enter Γ during the course of dynamic simulations.
Moreover, it is much more convenient to carry out integrations over the full surfaces of objects
(i.e. including parts that lie partially outside of Γ), as otherwise the meshes would need to be
split. The possibility of doing this is often assumed in the literature. Yet, due to the centroids
that appear explicitly in the BI and FBI equations (32) and (1), respectively, and the linear
term in the stresslet (18) it is not clear a priori whether this is indeed possible since these parts
contain striking non-periodicities. Here we explicitly show that the equations nevertheless hold
if applied correctly.

B.1. The boundary integral equation with cut objects
We consider a system with overlapping objects as sketched in figure 10. The outer boundary
of Ω is thus not formed by ∂Γ but rather by ∂Γ̃, A and B. The usual derivation of the BI
equation starts with integrating the reciprocal identity over Ω [e.g. 52, ch. 2.3]. Subsequent
use of the divergence theorem then explicitly introduces the boundaries of Ω. In section 2.2.1
the outer boundary was simply ∂Γ as all objects were located within Γ, but here it is given by
∂Γ̃ ∪A ∪B. This leads to

uj(x0) = . . .− 1
8πµ(NA∪Bf+)j(x0) + 1

8π (KA∪Bu)j(x0)

− 1
8πµ(N

∂Γ̃f
+)j(x0) + 1

8π (K
∂Γ̃u)j(x0) , x0 ∈ Ω , j = 1, 2, 3 .

(76)

We will use the notation introduced in figure 10 from now on and only deal explicitly with one
object and its periodic image (as also seen in this figure). Additional objects that lie partially
outside of the unit cell result in analogous terms. Objects that lie completely within Γ do not
require special treatment here. Both types of omitted terms will be indicated by an ellipsis to
shorten notation.
The first goal now is to recover integrals over the full unit cell surface ∂Γ instead of only

over ∂Γ̃ in equation (76). For this we exploit
∫
a +

∫
b′ = 0 and

∫
b +

∫
a′ = 0 for the single- or

double-layer kernels. This holds since a and b′ (and b and a′) denote the same surface but with
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Symbol Meaning
Ok The k’th object (of any type), sec. 2.1.2.
Bk The k’th bubble, sec. 2.1.2.
Ck The k’th capsule-like entity (a capsule, vesicle, red blood cell, . . . ), sec. 2.1.2.
Wk The k’th wall (walls do not have any inside), sec. 2.1.2.
NO The total number of objects, sec. 2.1.2.
NB, NC , NW The number of bubbles, capsules and walls, sec. 2.1.2.
Ω The ambient fluid (the set outside of any object), sec. 2.1.2.
Γ The unit cell, sec. 2.1.1.
∂Ok The surface of object Ok, sec. 2.1.2.
VOk

, VΓ The volume of the k’th object and of the unit cell Γ, sec. 2.1.1.
a(1), a(2), a(3) The three base vectors spanning the unit cell Γ, sec. 2.1.1.
X(α) A periodic grid vector in the real space with grid index α ∈ Z3, eq. (2).
b(1), b(2), b(3) The reciprocal base vectors, sec. 2.1.1.
k(κ) A periodic grid vector in the reciprocal space with grid index κ ∈ Z3, eq. (4).
u The velocity, sec. 2.1.2.
x A generic point, often also the integration variable.
x0 The evaluation point, sec. 2.2.
n The outside normalized normal vector, sec. 2.1.2.
P The pressure, eq. (6).
µ The viscosity of the ambient fluid Ω, sec. 2.1.2.
σij The stress tensor, eq. (8).
t The time.
λC The viscosity ratio of capsule C, sec. 2.1.2.
λ̄O The effective viscosity ratio of object O, eq. (13).
f , f+, f− The traction (general, outside and inside), eq. (7).
f̆ The periodic part of the traction, eq. (24).
4f The traction jump, eq. (9).
F The “unified traction” (f+ or 4f), sec. 2.2.1.
(N∂OqF ) The single-layer integral over the surface ∂Oq, eq. (11).
(K∂Oqu) The double-layer integral over the surface ∂Oq, eq. (12).
Gij The Green’s function for the single-layer integral (Stokeslet), eq. (14).
Tijl The Green’s function of the double-layer integral (Stresslet), eq. (18).
T̆ijl The periodic part of Tijl, eq. (18).
ck The prescribed velocity divergence of the bubbles, eqs. (5) and (30).
QOk

The flux out of or into the object Ok, eq. (30).
χ

(Ok)
j , χ(Ok) The geometric centroid of object Ok, eq. (29).
z

(k)
j The Wielandt deflation prefactor, eq. (45).
〈•〉Γ The volume average over the whole unit cell Γ, eq. (23).
hj An eigensolution to the homogeneous version of the BI equation, eq. (38).
aj Eigensolutions to the adjoint of the homogeneous equation, eq. (39).
Mj [a] Most of the right-hand side of the adjoint equation, eq. (40).
Rj Collection of the terms missing in the homogeneous equation, eq. (41).

Table 1: List of important symbols used throughout the text.
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Figure 10: Overlapping of objects with the unit cell boundary ∂Γ = ∂Γ̃ ∪ a′ ∪ b′. Primed quantities lie outside of
the unit cell (except a′ and b′ which form portions of ∂Γ). A single object O′B ∪OA is shown. This object has a
periodic image OB ∪O′A. Furthermore, both are cut at the same place into two parts as they overlap with ∂Γ.
The four closed sets are O′B , OA, OB and O′A. The corresponding surfaces without the cut faces are B′, A, B and
A′. For the left object, the cut faces (dotted) are a and b′, where both lie on ∂Γ and are identical except that
their normal vectors point into opposite directions. I.e. there is no gap between a and b′. Similar for its right
image (but with b and a′). Moreover, there is no real gap between ∂Γ̃ and the objects. ∂Ω in this figure is given
by ∂Ω = ∂Γ̃ ∪A ∪B; in the general case ∂Ω also contains the full surfaces of objects completely located within
the unit cell.

antiparallel normal vectors (again, see figure 10). a′, b′ and ∂Γ̃ can be combined to ∂Γ, and the
remaining sets form the surfaces of the closed sets OA and OB. Thus, eq. (76) becomes

uj(x0) =− 1
8πµ(N∂OA∪∂OB

f+)j(x0) + 1
8π (K∂OA∪∂OB

u)j(x0) + . . .

− 1
8πµ(N∂Γf

+)j(x0) + 1
8π (K∂Γu)j(x0) , x0 ∈ Ω , j = 1, 2, 3 .

(77)

If OA and OB are parts of a capsule filled with a Stokesian fluid, the reciprocal identity also
holds for their insides. Integrating it over their volumes, using the divergence theorem and
adding the result to the above equation [compare 52, pages 37 and 143] recovers the form of
equation (10) that includes the viscosity ratios and the traction jumps, but now with separate
terms for each object part:

uj(x0) =− 1
8πµ(N∂OA∪∂OB

F )j(x0) + 1− λ̄OA∪OB

8π (K∂OA∪∂OB
u)j(x0) + . . .

− 1
8πµ(N∂Γf)j(x0) + 1

8π (K∂Γu)j(x0) , x0 ∈ Ω , j = 1, 2, 3 .
(78)

λ̄OA∪OB
:= λ̄OA

≡ λ̄OB
denotes the effective viscosity ratio of the two object parts, and f := f+.

Hence, the original equation (10) remains valid if (i) only the surface parts located within Γ
are taken into account, and (ii) the surfaces of the cuts lying on ∂Γ are added.
The next goal is to check if the unconnected set OA ∪OB in eq. (78) can be replaced with

the actual connected object OA ∪ O′B without changing the result. We additionally have to
see if the equation is invariant under translation of the evaluation point x0 by some periodic
grid vector X(α). This has to be done separately for the single- and double-layer integrals.
Moreover, we do this for some arbitrary point x0 ∈ Γ because both integral types are always
well-defined and we need it for the FBI equation.
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B.2. The single-layer potentials
First consider the single-layer integral for the outer traction f := f+ over ∂O′B for some general
evaluation point x0 ∈ Γ and an arbitrary grid vector X(α′) (cf. sec. 2.1.1). Outer tractions only
appear for bubbles which always have closed surfaces (capsule-like objects and walls possess
traction jumps instead). Furthermore, the object O′B is offset by construction from OB by some
particular grid vector X(α). Hence, we compute

(N∂O′Bf)j(x0 +X(α′)) =
∮
∂O′B

fi(x)Gij(x,x0 +X(α′)) dS(x)

=
∮
∂OB

fi(x+X(α))Gij(x+X(α),x0 +X(α′)) dS(x)

= −〈∇P 〉Γ ·X
(α)
∮
∂OB

ni(x)Gij(x,x0) dS(x) + (N∂O′Bf)j(x0)

= (N∂OB
f)j(x0) . (79)

We made a simple substitution from the first to the second line. From the second to the third
line, we used the periodicity of the Green’s function Gij , eq. (19a), as well as relation (24). The
last line follows because of equation (21).

If an object requires the traction jump4f (capsules, walls) and is possibly open, an analogous
result holds because 4f = f+ − f− = f̆

+ − f̆− is periodic as the linear terms from eq. (24)
drop out. Adding the OA contribution, we have

(N∂OA∪∂O′BF )(x0 +X(α′)) = (N∂OA∪∂OB
F )(x0) , x0 ∈ Γ , ∀α′ ∈ Z3 . (80)

Thus, we find for some general object that the single-layer integrals are invariant under
any possible periodic translations. Moreover, the single-layer integral over ∂Γ appearing in
equation (78) simply vanishes for an arbitrary evaluation point x0 ∈ R3 as in section 2.2.4.

B.3. The double-layer potentials
As for the single-layer potential, consider x0 ∈ Γ and an arbitrary grid vector X(α′). Note that
open objects (walls) do not require this integral (due to λ̄W = 1) and will therefore not be
considered. Then,

(K∂O′Bu)j(x0 +X(α′)) =
∮
∂O′B

ui(x)Tijl(x,x0 +X(α′))nl(x) dS(x)

=
∮
∂OB

ui(x)Tijl(x+X(α),x0 +X(α′))nl(x) dS(x)

= −8π
VΓ
X

(α)
j

∮
∂OB

uini dS + (K∂OB
u)j(x0) , (81)

where a simple substitution was performed again, and the periodicity of the velocity (eq. (22)),
the normal vector and the second argument of the Stresslet from eq. (18) was used. The first
argument of the Stresslet contributes the linear part. After using the divergence theorem and
adding the OA term, we obtain for x0 ∈ Γ

(K∂OA∪∂OB
u)j(x0) = 8π

VΓ
X

(α)
j

∫
OB

∇ · u dx3 + (K∂OA∪∂O′Bu)j(x0 +X(α′)) . (82)
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Hence, the double-layer integral is invariant under periodic offsetsX(α′) regarding the evaluation
point x0, but not under periodic translations of some object when its flux is non-zero. At first
sight this would mean that bubbles cause major troubles and somewhat destroy the formalism
for practical purposes as offsetting them leads to an additional term.

However, the BI equation additionally contains a double-layer integral over ∂Γ. This integral
also depends on the objects via the velocity. We will see that the interplay between this integral
and the double-layer integrals for the objects will recover the invariance. Thus, consider

(K∂Γu)j(x0 +X(α′)) = −8π
VΓ

∮
∂Γ
xjui(x)ni(x) dS(x) , x0 ∈ Γ . (83)

Note that the periodic contribution of the Stresslet vanishes as in section 2.2.4, and that
periodic offsets of x0 leave the equation unchanged, compare expression (18). Splitting up
∂Γ and exploiting that b and a′ (and a′ and b) denote the same surfaces but with antiparallel
normal vectors, we have

∮
∂Γ =

∫
∂Γ̃−

∫
a−

∫
b (with the same integrands as above). Next, we

add a zero by inserting 0 =
∫
A +

∫
B −

∫
A−

∫
B + . . . , and then use

∮
∂Ω =

∫
∂Γ̃ +

∫
A +

∫
B + . . . ,

where the ellipsis contains analogous terms for other objects. We also have
∫
A +

∫
a =

∮
∂OA

and∫
B +

∫
b =

∮
∂OB

. With this we find

(K∂Γu)j(x0 +X(α′)) = −8π
VΓ

[ ∮
∂Ω
xjuini dS

−
∮
∂OA

xjuini dS −
∮
∂OB

xjuini dS
]

+ . . . , x0 ∈ Γ .
(84)

Applying the divergence theorem as in section 2.2.4 together with eq. (6b) yields

(K∂Γu)j(x0 +X(α′)) = 8π 〈uj〉Γ

+ 8π
VΓ

[ ∫
OA

xj∇ · u dx3 +
∫
OB

xj∇ · u dx3
]

+ . . . ,
(85)

x0 ∈ Γ , j = 1, 2, 3 .

The appearance of the average flow is consistent with the results from section 2.2.4. The two
integrals vanish for capsules, i.e. just like in eq. (82) and as for the single-layer potential they
do not cause any trouble. Thus, we will now concentrate on the special case of bubbles.

To this end, consider the combined double-layer potentials for the bubbles and the unit cell:
Define the double-layer parts from eq. (78) as

DLj(x0) := (K∂OA∪∂OB
u)j(x0) + (K∂Γu)j(x0) + . . . , (86)

x0 ∈ Γ , j = 1, 2, 3 ,

where λ̄OA∪OB
= 0 for bubbles has been used. By virtue of equations (82) and (85) we have

DLj(x0 +X(α′)) = DLj(x0) , x0 ∈ Γ , j = 1, 2, 3 (87)

and

DLj(x0) = (K∂OA∪∂O′Bu)j(x0) + 8π
VΓ

[ ∫
OA

xj∇ · udx3

+
∫
OB

(
xj +X

(α)
j

)
∇ · u(x) dx3

]
+ . . . , x0 ∈ Γ ,

(88)
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where 〈u〉Γ is hidden in the ellipsis. Using the periodicity of the velocity from eq. (22), we find
that the last integral is identical to

∫
O′B

xj∇ · u(x) dx3. Thus,

DLj(x0) = (K∂OA∪∂O′Bu)j(x0) + 8π
VΓ

∫
OA∪O′B

xj∇ · u(x) dx3 + . . . , (89)

x0 ∈ Γ , j = 1, 2, 3 .

or by means of equations (28) and (30)

DLj(x0) = (K∂OA∪∂O′Bu)j(x0) + 8π
VΓ
QOA∪O′Bχ

(OA∪O′B)
j + . . . , (90)

x0 ∈ Γ , j = 1, 2, 3 .

χ(OA∪O′B) is the centroid of the combined object parts OA and O′B (i.e. the centroid of the
non-split object), and QOA∪O′B the prescribed flux.

B.4. Putting it all together
Given the above results, the BI equation (78) for split bubbles is thus

uj(x0) = − 1
8πµ(N∂OA∪∂O′BF )j(x0) + 1

8π (K∂OA∪∂O′Bu)j(x0)

+ 8π
VΓ
QOA∪O′Bχ

(OA∪O′B)
j + . . . , x0 ∈ Ω , j = 1, 2, 3 .

(91)

If we did not move around the objects with the help of periodicity, equation (85) would have
led to the equivalent expression

uj(x0) = − 1
8πµ(N∂OA∪∂OB

F )j(x0) + 1
8π (K∂OA∪∂OB

u)j(x0)

+ 8π
VΓ

[
QOA

χ
(OA)
j +QOB

χ
(OB)
j

]
+ . . . , x0 ∈ Ω , j = 1, 2, 3 .

(92)

Comparing these two equations, we can draw the following conclusion regarding the original
BI equation (32): If some bubble overlaps with the unit cell’s boundary, we can either split
it up and use the two unconnected parts (OA and OB) on the opposite sides of the unit cell
separately, including different centroids (equation (92)). Or, more conveniently and intuitively,
we can simply integrate over the surface of the whole connected bubble OA ∪O′B including the
parts that lie outside of Γ and use its actual centroid (equation (91)). This is highly desirable
for the numerical implementation because we only have to deal with whole objects and no
splitting of the meshes is required. It also shows that the choice of the unit cell’s position in
the 3D Cartesian coordinate system does not matter.
We further note that the non-zero contributions from the double-layer integrals over ∂Γ

containing the centroids are crucial to obtain invariance for bubbles, and hence the above results
are non-trivial. If they were missing (by assuming K∂Γu = 0), eq. (82) would have introduced
an additional position dependent term. This would lead to changes in the flow field if a bubble
is moved by a periodic grid vector –which is clearly unphysical.

For objects other than bubbles, the fluxes are missing and additional viscosity ratios appear.
Nevertheless, the above statement (that we can simply choose the whole objects) remains
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true because the individual single- and double-layer integrals are invariant under periodic
translations for objects with zero flux (compare equations (82), (85) and section B.2).

Analogous conclusions can be drawn for the FBI equation (1) which in the end is evaluated
by our numerical code: First, sections B.2 and B.3 considered a general evaluation point x0 ∈ Γ
and thus remain valid if x0 is located on the surface of some object. We additionally saw that
the integrals are invariant if x0 is moved by some periodic grid vector X(α′), allowing x0 to be
on the parts of surfaces that lie outside of Γ. Second, the imposed flow as well as the Wielandt
deflation term are periodic due to equation (45). Third, the proof from section 2.3.4 is largely
independent of the position of the objects. Where integrals over ∂Γ occur (e.g. in the energy
conservation statements), they can be reconstructed from ∂Γ̃ in the same way as was done for
equation (77), leaving the procedure unchanged. Replacing the object parts with the whole
objects therefore does not affect the proof in section 2.3.
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