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Fluid dynamics simulations with the lattice Boltzmann method (LBM) are very memory intensive. Alongside
reduction in memory footprint, significant performance benefits can be achieved by using FP32 (single) precision
compared to FP64 (double) precision, especially on GPUs. Here we evaluate the possibility to use even FP16
and posit16 (half) precision for storing fluid populations, while still carrying arithmetic operations in FP32. For
this, we first show that the commonly occurring number range in the LBM is a lot smaller than the FP16 number
range. Based on this observation, we develop customized 16-bit formats—based on a modified IEEE-754 and
on a modified posit standard—that are specifically tailored to the needs of the LBM. We then carry out an
in-depth characterization of LBM accuracy for six different test systems with increasing complexity: Poiseuille
flow, Taylor-Green vortices, Karman vortex streets, lid-driven cavity, a microcapsule in shear flow (utilizing the
immersed-boundary method), and, finally, the impact of a raindrop (based on a volume-of-fluid approach). We
find that the difference in accuracy between FP64 and FP32 is negligible in almost all cases, and that for a large
number of cases even 16-bit is sufficient. Finally, we provide a detailed performance analysis of all precision
levels on a large number of hardware microarchitectures and show that significant speedup is achieved with
mixed FP32/16-bit.

DOI: 10.1103/PhysRevE.106.015308

I. INTRODUCTION

The lattice Boltzmann method (LBM) [1–4] is a powerful
tool to simulate fluid flow. The parallel nature of the un-
derlying algorithm has led to (multi-)GPU implementations
[5–62], becoming a popular choice as speedup can be up
to two orders of magnitude compared to CPUs at similar
power consumption. However, most GPUs have only poor
FP64 (double precision) arithmetic capabilities1 and thus the
vast majority of GPU codes have been implemented in FP32
(single precision), while most CPU codes are written in FP64.
This difference, and, in particular, whether FP32 is suffi-
cient for LBM simulations compared to FP64, has been a
point of persistent discussion within the LBM community
[15–20,31–36,52–58,60,63–65]. Nevertheless, only a few pa-
pers [19,35,36,52,60,66] provide some comparison on how
floating-point formats affect the accuracy of the LBM and
mostly find only insignificant differences between FP64 and
FP32 except at very low velocity and where floating-point

*Corresponding author: moritz.lehmann@uni-bayreuth.de
1As of June 2022, the only GPUs with >2 TFLOPs/s in FP64

are H100, MI250(X), MI210, A100, CMP 170HX, MI100, A30,
V100(S), Titan V, GV100, MI60, MI50, Radeon Pro VII, GP100,
P100, Radeon VII, W9100, and W8100. All other data-center, gam-
ing, and pro GPUs have limited FP64 capabilities.

round-off leads to spontaneous symmetry breaking. Besides
the question of accuracy, a quantitative performance compar-
ison across different hardware microarchitectures is missing,
as the vast majority of LBM software is either written only for
CPUs [67–79] or only for Nvidia GPUs [30–56] or CPUs and
Nvidia GPUs [18–29].

A second point of concern has been the amount of video
memory on GPUs, which is in general smaller than standard
memory on CPU systems and can thus lead to restrictions in
domain size. LBM solely works on density distribution func-
tions (DDFs) fi (also called fluid populations)—floating-point
numbers [80–83]—that need to be loaded from and written
to video memory in every time step. These DDFs take up
the majority of the consumed memory. If wanting to reduce
the memory footprint of LBM with reduced floating-point
precision, it comes to mind to store the DDFs in a lower
precision number format (streaming step) while doing arith-
metic in higher (floating-point) precision (collision step). This
is equivalent to decoupling arithmetic precision and memory
precision [84,85]. As a desirable side effect, since the lim-
iting factor regarding compute time is memory bandwidth
[12–21,30–45,52–55,59,60,63,64,67,86–88], lower precision
DDFs also vastly increase performance. Such a mixed pre-
cision variant, where arithmetic is done in FP64 and DDF
storage in FP32, has already been used by Refs. [35,57]. Using
FP32 arithmetic and FP16 DDF storage would be even better,
but has not yet been attempted due to concerns about possibly
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insufficient accuracy. Lower 16-bit precision has already been
successfully applied to other fluid solvers [89–91] and to a lot
of other high-performance computing software [92,93].

The purpose of this paper is thus twofold: First, to render
mixed FP32/16-bit precisions feasible for LBM, we intro-
duce customized 16-bit number formats that turn out to be
superior to standard IEEE-754 FP16 in LBM applications and
in many cases perform as accurately as FP32. Therein, we
leverage that some of the FP32 bits do not contain physical
information or are entirely unused, similar to Ref. [89]. This
approach requires minimal code interventions and can be eas-
ily combined with any velocity set, collision operator, swap
algorithm, or LBM extension. In addition to using custom-
built floating-point formats, we show that shifting the DDFs
by subtracting the lattice weights and computing the equi-
librium DDFs in a specific order of operations as originally
proposed by Skordos [66] and further investigated by He and
Luo [94] and Gray and Boek [60]—an optimization benefi-
cial across all floating-point formats and already widely used
[6–12,24–26,31,35,53,60,66,68–76,88,94]—turns out abso-
lutely crucial for the 16-bit compression.

Second, we present an extensive comparison of FP64,
FP32, FP16, shifted posit16 as well as our customized for-
mats. Regarding LBM accuracy, we study Poiseuille flow
through a cylinder [95], Taylor-Green vortex energy dissi-
pation [66,96], Karman vortices [97] from flow around a
cylinder, lid-driven cavity [30,33,37,39,49,52,98–103], defor-
mation of a microcapsule in shear flow [104–106] with the
immersed-boundary method (IBM) extension, and microplas-
tic particle transport during a raindrop impact [10] with the
volume-of-fluid and IBM extensions. Regarding performance,
we exploit the capability of our FluidX3D LBM implementa-
tion written in OpenCL [6–12] to provide benchmarks for all
floating-point variants on a large variety of hardware, from the
world’s fastest datacenter GPU over various consumer GPUs
and CPUs from different vendors to even a mobile phone
ARM system-on-a-chip (SoC), and show roofline analysis
[64,87,107] for one hardware example.

II. LATTICE BOLTZMANN ALGORITHM

A. LBM—overview

The LBM is a Navier-Stokes flow solver that discretizes
space into a Cartesian lattice and time into discrete time steps
[1–4]. For each point on the lattice, density ρ and velocity
�u of the flow are computed from so-called density distribu-
tion functions (DDFs) fi (also called fluid populations). The
DDFs are floating-point numbers and represent how many
fluid molecules move between neighboring lattice points in
each time step. Because of the lattice, only certain directions
are possible for this exchange and there are various levels of
this directional discretization, in 3D typically 19 (including
the center point), where space-diagonal directions are left
out. After exchange of DDFs from and to neighboring lattice
points (streaming), the DDFs are redistributed locally on each
lattice point (collision). For the collision, there are various ap-
proaches, the most common being the single-relaxation-time
(SRT), two-relaxation-time (TRT), and multirelaxation-time
(MRT) collision operators [1,12].

The computation of the streaming part is done by copying
the DDFs in memory to their new location. The algorithm is
provided in Appendix A 2 a with notation as in Appendix A 3.

B. DDF-shifting

To achieve maximum accuracy, it is essential not to work
with the DDFs fi directly, but with shifted f shifted

i := fi − wi

instead [53,60,66,88,94]. wi = f eq
i (ρ = 1, �u = 0) are the lat-

tice weights and ρ and �u are the local fluid density and
velocity. This requires a small change in the equilibrium DDF
computation,

f eq-shifted
i (ρ, �u) := f eq

i (ρ, �u) − wi (1)

= wi ρ ·
(

(�u ◦ �ci )2

2 c4
+ �u ◦ �ci

c2
+ 1 − �u ◦ �u

2 c2

)
− wi (2)

= wi ρ ·
(

(�u ◦ �ci )2

2 c4
− �u ◦ �u

2 c2
+ �u ◦ �ci

c2

)
+ wi (ρ − 1), (3)

and density summation:

ρ =
∑

i

(
f shifted
i + wi

) =
(∑

i

f shifted
i

)
+ 1. (4)

We emphasize that it is key to choose Eq. (3) exactly as pre-
sented without changing the order of operations,2 otherwise
the accuracy may not be enhanced at all [60,66,94]. With
this exact order, the round-off error due to different sums is
minimized. This offers a large benefit, most prominently on
FP16 accuracy, by substantially reducing numerical loss of
significance at no additional computational cost. Since it is
also beneficial for regular FP32 accuracy, it is already widely
used in LBM codes such as our FluidX3D [6–12], OpenLB
[68–71], ESPResSo [24–26], Palabos [72–76], and some ver-
sions of waLBerla [53]. In Appendix A 2, we provide the
entire algorithm without and with DDF-shifting for compar-
ison and in Appendix A 3 we clarify our notation.

We also recommend doing the summation of the DDFs in
alternating + and − order during computation of the velocity
�u to further reduce numerical loss of significance, for exam-
ple, ux = ( f1 − f2 + f7 − f8 + f9 − f10 + f13 − f14 + f15 −
f16)/ρ for the x component in D3Q19.

Gray and Boek [60] also proposed computing (ρ − 1) =∑
i f shifted

i as a separate variable and directly inserting it into
Eq. (3); while we do not advise against this, we found its
benefit to be insignificant at any floating-point precision while
increasing complexity of the code and thus omit it in our
implementation.

Although without DDF-shifting, the equation for the
equilibria dictates the number distribution of the DDFs,
with DDF-shifting applied, the DDFs are always centered
around zero. Higher-order equilibria definitions such as
Refs. [108–110], an alternative to Eq. (3), are likely to work as
well with 16-bit compression if DDF-shifting is applied, but
further validation is required.

2To minimize the overall number of floating-point operations, terms
should be precomputed such that f eq-shifted

i = A · ( 1
2 (B2 + C) ± B) +

D requires only three fused-multiply-add (FMA) operations.
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FIG. 1. Histogram of the DDFs for the lid-driven cavity simula-
tion from Sec. IV D (Re = 1000, Ma = 0.17, grid resolution 1283)
after 100 000 LBM time steps. The simulation is performed without
the DDF-shifting (top) and with DDF-shifting (bottom), both times
in FP32/FP32.

C. Which range of numbers does the LBM use?

In Fig. 1, we present the distribution of fi and f shifted
i for

the example system of the lid-driven cavity from Sec. IV D. A
more detailed look at the DDF distributions of this system are
provided in Figs. 19 and 20 in the Appendix. Similar data for
the remaining setups are given in Appendix Fig. 21. It is quite
remarkable how the number range in all cases is very lim-
ited. The fi accumulate around the LBM lattice weights (for
D3Q19 wi ∈ { 1

36 , 1
18 , 1

3 }) and the f shifted
i accumulate around

0, where floating-point accuracy is best. So for FP32 not only
are the trailing bits of the mantissa expected to be nonphysical
numerical noise [89], but also some bits of the exponent are
entirely unused, meaning one can waive these bits without
losing accuracy.

To find the theoretical maximum number range of fi and
f shifted
i , we insert �u j = c �c j

|�c j | in Eqs. (A4) and (3) and find

that 1
ρ

| f eq
i | � δ or 1

ρ
| f eq-shifted

i | � δshifted, respectively, with

the values of δ and δshifted depending on the velocity set in
use (Table I).

With τ > 0.5, through Eq. (A5), we get in the worst case

| fi| � |2 f eq
i | � 2 ρ δ, (5)

| f shifted
i | � |2 f eq-shifted

i | � 2 ρ δshifted, (6)

respectively, because the DDFs in stable simulations are
expected to follow the equilibrium DDFs. The density ρ

typically deviates only little from ρ ≈ 1. Assuming ρ < 2
leads to | fi| � 2 being the worst-case maximum number range
(D3Q13, no DDF-shifting). With the more typical D3Q19 and

TABLE I. The numerical value of δ and δshifted depending on the
used velocity set.

D2Q9 D3Q7 D3Q13 D3Q15 D3Q19 D3Q27

δ 0.45 0.47 0.50 0.42 0.34 0.30
δshifted 0.31 0.35 0.25 0.31 0.17 0.21

DDF-shifting, the same number range | f shifted
i | � 2 restricts

the density to a less strict ρ < 6. Keeping the sign is required
because f shifted

i (and also fi) can be negative.
| f shifted

i | � 2 and the resulting ρ < 6 is even sufficient for
covering a fairly large class of compressible flows. The shock
simulations in Ref. [108], for example, range in density from
0.6 to 2.2, so these simulations could possibly work as well.
However, careful considerations need to be made for the in-
dividual setup to not exceed this limit. If a higher value for
density is required, the floating-point formats with limited
range could be shifted toward higher numbers; however, care-
ful validation is required as this comes at the cost of worse
accuracy at small numbers. The later proposed posit formats
P160S and P161S do not put a limit on density, so they would
be a better fit for simulations with large density variation.

III. NUMBER REPRESENTATION MODELS

A 16-bit number can represent only 65 536 different val-
ues. The task is to spread these along the number axis in a
way that the most commonly used numbers are represented
with the best possible accuracy. There is a variety of number
representations that come to mind as a 16-bit storage format:
fixed-point, floating-point as well as the recently developed
posit format [111], and each of them can be adjusted specif-
ically for the LBM. Figure 2 illustrates the number formats
investigated in this paper and Fig. 3 shows their accuracy
characteristics.

A. Floating-point

1. Overview

In the normalized number range, a floating-point number
[80–83] is represented as

x = (−1)s︸ ︷︷ ︸
sign

· 2e−b︸ ︷︷ ︸
exponent

· (1 + 2−nm m)︸ ︷︷ ︸
mantissa

, (7)

with s being the sign bit, e being an integer representing the
exponent, and m being an integer representing the mantissa.
b is a constant called exponent bias and nm is the number
of bits in the mantissa (values in Table II). The precision
is log10(2nm+1) decimal digits3 and the truncation error is
ε = 2−nm .

When the exponent e is zero, the mantissa is shifted to the
right as a way to represent even smaller numbers close to zero,
although at less precision. This is called the denormalized
number range and making use of it during the conversions that
will be described below is not straightforward, but essential
alongside correct rounding to keep decent accuracy with the
16-bit formats.

2. Customized FP16 formats for the LBM

In our lattice Boltzmann simulations, we implement and
test three different 16-bit floating-point formats:

(1) FP16: Standard IEEE-754 FP16, with FP32 ↔ FP16
conversion supported on all CPUs and GPUs from within the
last 12 years.

3The +1 refers to the implicit leading bit of the mantissa.
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TABLE II. Comparing the properties of the number formats used here to store the LBM DDFs fi.

Bits nm b Digits ε Range Smallest normalized number Smallest denormalized number

IEEE FP64 64 52 1023 16.0 2.2×10−16 ±1.797693×10308 2.225074×10−308 4.940656×10−324

IEEE FP32 32 23 127 7.2 1.2×10−7 ±3.402823×1038 1.175494×10−38 1.401298×10−45

IEEE FP16 16 10 15 3.3 9.8×10−4 ±6.550400×104 6.103516×10−5 5.960464×10−8

FP16S 16 10 30 3.3 9.8×10−4 ±1.999023×100 1.864464×10−9 1.818989×10−12

FP16C 16 11 15 3.6 4.9×10−4 ±1.999512×100 6.103516×10−5 2.980232×10−8

Posit P160S 16 0–13 – �4.2 �1.2×10−4 ±1.280000×102 – 4.768372×10−7

Posit P161S 16 0–12 0 �3.9 �2.4×10−4 ±2.097152×106 – 2.910383×10−11

Posit P162C 16 0–12 0 �3.9 �2.4×10−4 ±1.999756×100 – 1.734724×10−18

(2) FP16S: We downscale the number range of IEEE-754
FP16 by ×2−15 to ±2 and use the convenience that all modern
CPUs and GPUs can do IEEE-754 floating-point conversion
in hardware.

(3) FP16C: We allocate one bit less for the exponent (to
decrease number range towards small numbers) and one bit
more for the mantissa (to gain accuracy). The number range
is also limited to ±2. This custom format requires manual
conversion from and to FP32.

FIG. 2. The number 1.0 represented by the different formats we
investigate here. The leftmost single bit is the sign s and the right-
most segment is the mantissa m. For floating-point (FP), the center
segment is the exponent e. FP16S and FP16C are new formats specif-
ically designed to store the DDFs. Fixed-point (INT16S) does not
have an exponent. Posits have dynamic partitioning of the segments,
with an extra regime segment and an optional exponent segment next
to the mantissa.

When looking at Table II and Fig. 3, FP16S and FP16C
differ in extended range toward small numbers versus halved
truncation error ε. The question arises which of these two
traits is more important for LBM. FP16 is inferior to both
FP16S and FP16C as it combines lower mantissa accuracy
and less range toward small numbers. Since FP16S comes at
no additional computational cost and complexity compared to
FP16, FP16S should always be preferred over FP16 for storing
the DDFs.

3. Floating-point conversion: FP32 ↔ FP16S

The IEEE-754 FP32 ↔ FP16/FP16S conversion is sup-
ported in hardware and therefore only briefly described below.

FP32 → FP16S: For the FP32 → FP16 conversion,
OpenCL provides the function vstore_half_rte that is exe-
cuted in hardware. To convert to the FP16S format instead, we
shift the number range up by 215 via regular FP32 multiplica-
tion right before conversion. This is equivalent to increasing
the exponent bias b by 15.

FP16S → FP32: For the FP16 → FP32 conversion,
OpenCL provides the function vload_half that is executed
in hardware. To convert from the FP16S format instead, we

FIG. 3. Accuracy characteristics of the number formats investi-
gated in this paper. This plot shows only the local minima (measured
graphs see Fig. 18). FP16C reduces number range but increases ac-
curacy in the normalized regime (horizontal part). For floating-point
formats, the downward slope indicates the denormalized part, where
accuracy behaves like fixed point. We also show 16-bit fixed-point
scaled by ×2−14 (INT16S). Posits (P16) have slopes left and right,
with highest accuracy in the middle, which here is shifted from 1 to

1
128 , hence the “S”. P160S/P161S have 0/1-bit exponents, making the
slopes more (less) steep and decreasing (increasing) number range.
P162C is a custom format with 2-bit exponent but asymmetric slope.
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shift the number range down by 2−15 via regular FP32 multi-
plication right after conversion.

4. Floating-point conversion: FP32 ↔ FP16C

For FP32 ↔ FP16C conversion, we developed a set of
fast conversion algorithms that work in any programming
language and on any hardware which we describe in some
more detail further below. An OpenCL C version is presented
in Listing 1.

We ditch NaN and Inf definitions for an extended number
range by a factor of 2 and less complicated and faster conver-
sion. In PTX assembly [112], the FP32 → FP16C conversion
takes 25 instructions and FP16C → FP32 takes 26 instruc-
tions.

FP32 → FP16C: The first step is to interpret the bits
of the FP32 input number as uint, for which there is the
as_uint(float x) function provided by OpenCL. The sign
bit remains identical as the leftmost bit via bit-masking and
bit-shifting. To assure correct rounding, we add a 1 to the 12th
bit from left (0x00000800), because mantissa bits at positions
12 to 0 later are truncated. Next, we extract the exponent e by
bit-masking and bit-shift by 23 places to the left.

For normalized numbers, the exponent is decreased by the
difference in bias 127 − 15 = 112 and bit-shifted to the right
by 11 places. A final bit-mask ensures that there is no overflow
into the sign bit. The mantissa is bit-shifted in place and or-ed
to sign and exponent.

For denormalized numbers, we first add a 1 to place
24 (0x00800000) of the mantissa (to later figure out how
many places the mantissa was shifted) and then bit-shift it
to the right by as many places as the new exponent is be-
low zero. Correct rounding, however, makes this a bit more
difficult: We need to add 1 for rounding to the leftmost
place of the mantissa that is cut off. To undo the initial
rounding we did earlier, instead of 0x00800000, we add
0x00800000-0x00000800=0x007FF800, then shift by one
place less than the new exponent is below zero, add 1 to the
rightmost bit and finally shift right the one remaining place.

The exponent itself is the switch deciding whether the nor-
malized or denormalized conversion is used. As an optional
safety measure, we add saturation: If the number is larger than
the maximum value, we override all exponent and mantissa
bits to 1 (bitwise or with 0x7FFF).

FP16C → FP32: To convert back to FP32, we first
extract the exponent e and the mantissa m by bit-masking and
bit-shifting. Additionally, since we intend to avoid branching,
we already count the number of leading zeros4 v in the
mantissa for decoding the denormalized format: We cast m to
float,5 reinterpret the result as uint, bit-shift the exponent
right by 23 bits and subtract the exponent bias, giving us the
base-2 logarithm of m, equivalent to 31 minus the number of
leading zeros.

4The OpenCL function clz(m) also counts the number of leading
zeros. While translated into a single clz.b32 PTX instruction (in-
stead of cvt.rn.f32.u32 mov.b32 shr.u32), clz.b32 executes
much slower, leading to noticeably worse performance.

5Casting an int to float implicitly does a log2 operation to
determine the exponent.

The sign bit is bit-masked and bit-shifted in place. The
exponent e again decides for normalized or denormalized
numbers: For normalized numbers (e �= 0), the exponent is
increased by the difference in bias 127 − 15 = 112 and or-
ed together with the bit-shifted mantissa. For denormalized
numbers (e = 0 and m �= 0), the mantissa is bit-shifted to the
right by the number of leading zeros and the shift-indicator
1 is removed by bit-masking. The mantissa is or-ed with the
exponent which is set by the number of leading zeros and
bit-shifted in place.

Finally, the uint result is reinterpret as float via the
OpenCL function as_float(uint x).

B. Posit

1. Overview

The novel posit format (type-III Unum) [90,111,113,114]
is different from floating-point in that the bit segment for the
mantissa (and also exponent) is variable in size and there is
another bit segment, the regime, with variable size as well.
The posit number representation is

x = (−1)s︸ ︷︷ ︸
sign

· (2ne+1)r︸ ︷︷ ︸
regime

· 2e︸︷︷︸
exponent

· (1 + 2−nm m)︸ ︷︷ ︸
mantissa

, (8)

with sign s, regime r, exponent e, and mantissa m. n = 1 +
(nr + 1) + ne + nm is the total number of bits, whereby nr , ne,
and nm are the variable numbers of bits in regime, exponent
and mantissa, respectively.

For very small numbers, the regime bit pattern looks like
000..01 (negative r), then gets shorter toward 01 (r = −1),
flips to 10 (r = 0) and then gets longer again, looking like
111..10 (positive r). The last bit is the regime terminator bit
that unambiguously tells the length of the regime. This bit is
not included in the regime size nr , so the size of the regime
bit pattern is nr + 1. nr determines the value of the regime:
r = −nr if the regime terminator bit is 1 or r = nr − 1 if the
regime terminator bit is 0.

For increasing regime size, the remaining bits for exponent
and mantissa are shifted to the right, so the mantissa (and if
no mantissa bits are left also the exponent) become shorter
and precision is reduced.

Posits can be designed with different (fixed) exponent sizes
or no exponent at all. Just like for floating-point, larger expo-
nent increases the range but decreases accuracy. This way, the
posit format is designed to deliver variable accuracy based on
where the number is in the regime: best accuracy is around
±1.0 where the regime is shortest (superior to floating-point)
but for both tiny and large numbers, much precision is lost
[114].

2. Customized posit formats for the LBM

As a storage format for LBM DDFs, where numbers close
to 0 need to be resolved best and numbers outside the ±2
range are not required at all, the standard 16-bit posit formats
seems an unfavorable choice. However, by multiplying a con-
stant before and after conversion, similar to FP16S, we shift
the most accurate part down to smaller numbers. We take a
closer look at three different posit formats:

(1) P160S: 16-bit posit without exponent, shifted down by
×27. In the interval [2−11, 2−3], accuracy is equal to or better
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than FP16S and in the interval [2−10, 2−4], accuracy is equal
to or better than FP16C. The range toward small numbers is
very poor and for numbers >2−3, accuracy is vastly degraded.

(2) P161S: 16-bit posit with one-bit exponent, shifted
down by ×27. In the interval [2−13, 2−1], accuracy is equal to
or better than FP16S and in the interval [2−11, 2−3], accuracy
is equal to or better than FP16C. For numbers <2−13 or >2−1,
accuracy is reduced. The range toward small numbers is
between FP16S and FP16C. This format poses no limitations
on the density ρ because its number range is ±221.

(3) P162C: Custom asymmetric 16-bit posit with two-bit
exponent, not shifted. By only covering the lower flank, we
can get rid of the bit reserved for the regime sign, thus making
the regime shorter by one bit and increasing the mantissa
size by one bit in turn. The conversion algorithms are vastly
simplified with the asymmetric regime. Accuracy is better or
equal to FP16C in the interval [2−7, 2] and equal or better than
FP16S in the interval [2−11, 2]. For smaller numbers, accuracy
is slowly reduced, but the range toward small numbers is
excellent.

Both P160S and P161S provide numbers >2 that are un-
used in the LBM. Shifting the number range further down
would degrade accuracy for larger numbers too much. Since
the LBM with DDF-shifting uses numbers around 0 and it is
not entirely clear in which order of magnitude accuracy is
most important, it is also unclear if the increased accuracy
in the center interval will benefit more than the decreased
accuracy further away from the center will adversely affect.

3. FP32 ↔ posit conversion

Conversion between FP32 and posit is not supported in
hardware (yet). Since the reference conversion algorithm in
the SoftPosit library [115] is not written for speed primarily,
we provide self-written, ultrafast conversion algorithms in
Listing 1 in OpenCL C. These work on any hardware. A
detailed description of how the algorithms work is omitted
here but can be inferred by studying the provided listings.
Note that the posit specification [111] does two’s complement
for negative numbers to have no duplicate zero and an infinity
definition instead. To simplify the conversion algorithms and
since infinity is not required in our applications, we just use
the sign bit to reduce operations, so there is positive and
negative zero.

C. Fixed-point

16-bit fixed-point format with a range scaling of ±2 has
discrete additive steps of 2−14 ≈ 6.110−5, so this is also the
smallest possible value. Compared to floating-point, precision
is worse for small numbers and better for large numbers. For
the LBM, this is insufficient and does not work.

D. Required code interventions

At all places where the DDFs are used as kernel parame-
ters, their data type is made switchable with a macro (fpXX).
At any location where the DDFs are loaded or stored in mem-
ory, the load (store) operation is replaced with another macro
as provided in Listing 1 for FP32, FP16S, FP16C, P160S,
P161S, and P162C. In the Appendix in Listing 2, we provide

the core of our LBM implementation, exemplary for D3Q19
SRT.

IV. ACCURACY COMPARISON

A. 3D Poiseuille flow

A standard setup for LBM validation is a Poiseuille flow
through a cylindrical channel [95]. For the channel walls,
we use standard nonmoving midgrid bounce-back boundaries
[1,12] and we drive the flow with a body force as proposed
by Guo et al. [116]. Simulations are done with the D3Q19
velocity set and a single-relaxation-time (SRT) collision
operator. We compare the simulated flow profile usim(r) with
the analytic solution [117]

utheo(r) = f

4 ρ ν
(R2 − r2) (9)

to compute the error. Here, ρ = 1 is the average fluid density,

r =
√(

y − Ly

2

)2

+
(

z − Lz

2

)2

(10)

is the radial distance from the channel center, R is the channel
radius,

ν = 2 R umax

Re
= τ

3
− 1

6
(11)

is the kinematic shear viscosity, and τ is the relaxation time.
The dimensions of the simulation box are

Lx = 1, Ly = Lz := 2 (R + 1). (12)

The flow is driven by a force per volume f that is calculated
by rearranging Eq. (9) with r = 0:

f = 4 ρ ν umax

R2
. (13)

In accordance with Ref. [12], we define the error as the L2

norm [1, p. 138]:

E =
√∑R

r=0 |usim(r) − utheo(r)|2∑R
r=0 |utheo(r)|2 . (14)

In Fig. 4, we keep the Reynolds number and center velocity
constant at Re = 10 and umax = 0.1, and vary channel radius

FIG. 4. Error of D3Q19 SRT Poiseuille flow for varying channel
radius R (lattice resolution) at constant Reynolds number Re = 10
and constant center flow velocity umax = 0.1. The dashed lines rep-
resent corresponding simulations without DDF-shifting.
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FIG. 5. Error of D3Q19 SRT Poiseuille flow for varying center velocity umax at constant Reynolds number Re ∈ {0.1, 1, 10, 100} and
constant channel radius (a) R = 31 and (b) R = 63. The dashed curves represent corresponding simulations without DDF-shifting. The vertical
lines represent the LBM relaxation time τ = 1.

R and kinematic shear viscosity ν accordingly. For R � 15,
we see almost no difference between any of the floating-
point variants. Here the staircase effect of the channel walls
dominates the error. Moving toward larger radii, the error
increases at first for FP32/FP16 and FP32/FP16S and later for
FP32/FP16C as well, while FP64/xx and FP32/FP32 show
no difference in this regime either. 16-bit posit formats hold up
even better here with their increased peak accuracy. P162C for
small R behaves like FP16C and then migrates over to FP16S
as R becomes larger and the DDFs become smaller. We also
simulate the same system without DDF-shifting (dashed lines)
to quantify the difference. Already here we see that the 16-bit
formats become unfeasible without DDF-shifting.

To confirm that the observed agreement between
FP32/FP32 and FP64/FP64 is not a coincidence of our
implementation, in Fig. 4 we include data from a simulation
of the very same system with the LB3D code [79] that is
further described in the Appendix.

We now investigate the error in more detail for a con-
stant channel radius R ∈ {31, 63} in Fig. 5. We simulate the
flow in the channel for different Reynolds numbers Re ∈
{0.1, 1, 10, 100} and vary the center velocity umax and kine-
matic shear viscosity ν accordingly.

We find that the higher the Reynolds number, the further
the minimal error is shifted toward larger umax, always staying
close to where τ = 1 (vertical lines). The better small num-
bers can be resolved, the lower umax can be chosen before
the error suddenly becomes large. The better the accuracy of
the mantissa, the lower the overall error, up to a certain point
where discretization errors dominate at large umax.

It is important to consider that compute time is proportional
to umax and that umax < umax,τ=1 = Re

12 R smaller than at the
error minimum is thus less practically relevant. In the domain
umax � umax,τ=1 (in Fig. 5, right of the vertical lines), FP16C

is almost always superior to FP16S, especially at higher Re.
Posits show their superior precision most of the time, if the
DDFs are just in the right interval.

We find that without DDF-shifting, the 16-bit formats be-
come very inaccurate. For FP32/FP32, there is some benefit
at higher Re and especially low velocities umax. For FP64, the
DDF-shifting does not make any noticeable difference in this
setup as discretization errors dominate.

To better understand where the error comes from in the
Poiseuille channel radially, we exemplary plot the error con-
tribution as a function of the radial coordinate r for the
parameters R = 63, umax = 0.1, Re = 10 in Fig. 6. We find
that for FP64 to FP32, the largest error contribution is near the
channel wall (staircase effect along the no-slip bounce-back
boundaries). For FP32/16-bit, there is equal error contri-
bution near the wall, but the majority of the error comes
from close to the channel center. The wall poses a boundary
condition not only for velocity [u(R) = 0] but also for the

FIG. 6. Radial error profile of D3Q19 SRT Poiseuille flow for
a channel radius R = 63 and center flow velocity umax = 0.1 at
constant Reynolds number Re = 10. The small dots on the right
represent corresponding simulations without DDF-shifting. Note that
the error contribution is on a linear scale here.
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FIG. 7. Illustration of the velocity field at t = 0 with colored
streamlines.

velocity error. Going radially inward from the channel wall,
at first the staircase effect smooths out, lowering the error,
but then each concentric ring of lattice points accumulates
systematic floating-point errors, so at the channel center the
error is largest. For FP32/FP32, this error behavior is barely
noticeable but visible upon close inspection. For FP64, the
floating-point errors are so tiny that the staircase smoothing
continues all the way through the radial profile, making the
error smallest in the center. Without DDF-shifting, there is
no noticeable difference for FP64 and FP32 compared to
when DDF-shifting is done, but the 16-bit formats become
unfeasible.

B. Taylor-Green vortices

An especially well suited setup for testing the behavior at
low velocities is Taylor-Green vortices. A periodic grid of
vortices is initialized with velocity magnitude u0 (illustrated
in Fig. 7) and then over time viscous friction slows down the
vortices while they remain in place on the grid. In 2D, the
analytic solution [66,96] reads

ux(t ) = +u0 cos(k x) sin(k y) e−2 ν k2 t , (15)

uy(t ) = −u0 sin(k x) cos(k y) e−2 ν k2 t , (16)

ρ(t ) = 1 − 3 u2
0

4
(cos(2 k x) + cos(2 k y)) e−4 ν k2 t , (17)

and at t = 0 is used to initialize the simulation with u0 = 0.25.
Here ν = τ

3 − 1
6 = 1

6 is the kinematic shear viscosity at τ = 1
and k = 2 π N

L . L = 256 is the side length of the square lattice
and N = 1 is the number of periodic tiles in one direction. The
kinetic energy

E (t ) =
∫ L

0

∫ L

0

ρ

2

(
u2

x + u2
y

)
dx dy

= u2
0 π2 e−4 ν k2 t (18)

drops exponentially with time t . E0 = E (t = 0) denotes the
initial kinetic energy. We compute the kinetic energy from
the simulation as the discrete sum across all lattice points and
compare it to the analytic solution in Fig. 8. The simulated
kinetic energy drops exponentially as well, but at some point
it does not drop further and remains constant as a result of

FIG. 8. Relative kinetic energy E (t )/E0 of a D2Q9 SRT simu-
lation of Taylor-Green vortices compared to the analytic solution in
Eq. (18). Dashed lines represent corresponding simulations without
DDF-shifting.

floating-point errors. The relative energies of the plateaus are
no coincidence: The plateaus are located at approximately the
truncation error ε squared (Table II) for the respective number
format in use. Particularly interesting is that for FP64/FP32
the plateau is much lower than for FP32 ε2, being closer
to FP64 ε2. With P160S, the DDFs are outside of the most
accurate interval, so accuracy is poor overall.

Finally, we note that the plateaus only reach down to ε2 if
DDF-shifting is properly implemented as presented in Eq. (3).
Without DDF-shifting, there is significant loss in accuracy
across all number formats.

C. Karman vortex street

Our next setup is a Karman vortex street in two dimensions
[97]: a cylinder with radius R = 32 is placed into a simula-
tion box with dimensions 512×1024. At the box perimeter,
a velocity of �u = (0, 0.15) is enforced using nonreflecting
equilibrium boundaries [12,118]. The Reynolds number is set
to Re = 2 R |u|

ν
= 250, defining the kinematic shear viscosity

ν = τ
3 − 1

6 and relaxation time τ .
If starting the simulation with perfectly symmetric initial

conditions, only floating-point errors can eventually trigger
the Karman vortex instability. We notice that in some cases,
the instability would not start at all even after several hundred
thousand time steps. To avoid this nonphysical behavior, we
initialize the velocity �u = (0, 0.15) not only at the simulation
box perimeter but also on the left half x < 256. This imme-
diately triggers the Karman vortex instability regardless of
floating-point setting.

We probe the velocity at the simulation box center
(256, 512) over time in Fig. 9. This demonstrates that,
when DDF-shifting is done, the 16-bit formats are almost
indistinguishable from FP64 ground truth both qualitatively
and quantitatively, with only minimal phase-shift for FP16,
FP16S, and P160S.

To assess in detail where eventual differences may be
present beyond a single velocity point probe, we look at the
vorticity throughout the simulation box. In Fig. 10, we show
the vorticity in the very much zoomed-in range of ±0.001. For
the 16-bit formats, in low vorticity areas there is noise present.
Comparing FP16 and FP16S, the extended number range

015308-8



ACCURACY AND PERFORMANCE OF THE LATTICE … PHYSICAL REVIEW E 106, 015308 (2022)

FIG. 9. Velocity x component of the Karman vortex street at
the simulation box center (256, 512) over time for various floating-
point precision. Dashed lines represent corresponding simulations
without DDF-shifting. Even after 100 000 LBM time steps (50 vor-
tex periods), the 16-bit graphs still cover the FP64 ground truth
as amplitude, frequency, and even phase appear indistinguishable.
Only zooming in at the last oscillation period reveals minuscule
differences in phase for FP16, FP16S, and P160S. The phase shift
in the 16-bit graphs is large without the DDF-shifting optimization.
FP32/FP16C, FP32/FP32, and FP64/FP32 are indistinguishable
from FP64 ground truth even when zooming in.

toward small numbers has no benefit here. FP16C with DDF-
shifting mostly mitigates this noise, showing that the noise
purely originates in smaller mantissa accuracy and numeric
loss off significance. Our custom posit P162C has similarly
low noise. P160S shows artifacts.

D. Lid-driven cavity

The lid-driven cavity is a common test setup for the LBM
[30,33,37,39,49,52,98–100] and other Navier-Stokes solvers
[101–103]. We here implement it in a cubic box at Reynolds
number Re = 1000. On the lid, velocity parallel to the y-axis
is enforced through moving bounce-back boundaries [1,12].
The box edge length is L = 128, the velocity at the top lid is
u0 = 0.1 in lattice units, and the kinematic shear viscosity is
set by the Reynolds number Re = L u0

ν
= 1000. We simulate

100 000 LBM time steps with the D3Q19 SRT scheme.
Figure 11 shows the y (z) velocity along horizontal (verti-

cal) probe lines through the simulation box center. All number
formats except P160S look indistinguishable, even without
DDF-shifting. Only when zooming in (not shown), for the
simulations without DDF-shifting, deviations in relative ve-
locity in the second digit become visible. With DDF-shifting,
deviations are present only in the fourth digit, being smallest
for FP16C, P161S, and P162C.

E. Capsule in shear flow

Here we test the number formats on a microcapsule in shear
flow, one of the standard tests for microfluidics simulations in
medical applications [105,106]. The D3Q19 multi-relaxation-
time (MRT) [1,12] LBM is extended with the IBM [119] to
simulate the deformable microcapsule in flow. For the IBM,
we use the same level of precision as for the LBM arithmetic,

FIG. 10. Vorticity in the vastly overexposed range ±0.001 for simulations (a) with and (b) without DDF-shifting, after 100 000 LBM
time steps. All simulations very accurately predict the vortex street, with frequency and amplitude of the vortices being identical and only
insignificant differences in phase-shift even after 50 vortex periods. FP32 is indistinguishable from FP64 ground truth. For 16-bit, in the low
vorticity range there is noise present, equally for FP16 and FP16S, but vastly reduced for FP16C and P162C. Omitting DDF-shifting vastly
increases this noise and also adds significant phase shift as can be seen by comparing the position of the last red vortex at the bottom.
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FIG. 11. The y-velocity along a vertical probe line through the
simulation box center as well as the z-velocity along a horizontal
line through the simulation box center. At the top lid, the velocity
is fixed. As the flow goes one rotation clockwise, the width of
the high-velocity peak increases and the height decreases. Dashed
lines represent corresponding simulations without DDF-shifting. As
a reference, we show the data from Delbosc et al. [33].

so either FP64 or FP32. As illustrated in Fig. 12, we place an
initially spherical capsule of radius R = 13.5 in the center of
a simulation box with the dimensions 128×64×192, and we
compute 385 000 time steps. At the top and bottom of the sim-
ulation box, a shear flow is enforced via moving bounce-back
boundaries [120]. The membrane of the capsule is discretized
into 5120 triangles and membrane forces, consisting of shear
forces (neo-Hookean) [104,105,121] as well as volume forces
(volume has to be conserved), are computed as in Ref. [105].

The Reynolds number is Re = 0.05, the kinematic shear
viscosity is ν = 1

3 , and we simulate various capillary numbers
Ca = γ̇ μ R

k1
∈ {0.010, 0.025, 0.05, 0.1, 0.2} by varying the

membrane shear modulus k1. The shear rate is γ̇ = 1.310−5

in simulation units. To cross validate our results, we perform
the same simulations with ESPResSo (FP32 for LBM, FP64
for IBM) [24], which has been cross validated with boundary-

FIG. 12. Illustration of the capsule in shear flow (FP32/FP32,
Ca = 0.1) simulation at dimensionless times γ̇ t ∈ {1, 2, 3, 4, 5}.
Each image shows the simulation box from the side, with the top
and bottom moving bounce-back boundaries marked in green. The
capsule initially deforms to an elongated shape and then performs
tank-treading, i.e., rotating the membrane while keeping its deformed
shape.

FIG. 13. Taylor deformation of the capsule first increases and
then plateaus as the capsule starts tank-treading. This plateau de-
pends on the Capillary number. Dashed lines represent corresponding
simulations without DDF-shifting.

integral simulations and many others in Ref. [105]. In Fig. 13,
we plot the Taylor deformation D = a−c

a+c over time, with the
largest and smallest semiaxes a and c of the deformed capsule
[105]. We see that even in this complex scenario, the FP16C
simulations produce physically accurate results with only in-
significant deviations from FP64. The other 16-bit formats,
especially posits, perform noticeably worse here. Without
DDF-shifting, while FP32 still appears identical to ground
truth, all 16-bit simulations do not produce the correct out-
come (deformation remains close to zero). This emphasizes
that DDF-shifting is essential for the lower precision formats.

F. Raindrop impact

Finally, we examine how number formats affect a volume-
of-fluid LBM simulation of a 4 mm diameter raindrop
impacting a deep pool at 8.8 m

s terminal velocity. This sys-
tem is described and extensively validated in Ref. [10] to
study microplastic particle transport from the ocean into the
atmosphere. The particles are simulated with the IBM. There,
simulations are performed in FP32/FP32 with the maximum
lattice size that fits into memory, so FP64 is not used here as it
does not fit into the memory of a single GPU. The dimension-
less numbers for this setup are Reynolds number Re = d u

ν
=

33498, Weber number We = d u2 ρ

σ
= 4301, Froude number

Fr = u√
d g

= 44.4, Capillary number Ca = u ρ ν

σ
= 0.1284 and

Bond number Bo = d2 ρ g
σ

= 2.179. The simulated domain
is 464×464×394 lattice points and runs on a single AMD
Radeon VII GPU. The impact is simulated for 10 ms time,
equivalent to 20 416 time steps in LBM units.

The raindrop impact is illustrated in Fig. 14. Note that
the fully parallelized GPU implementation of the IBM with
floating-point atomic_add_f makes the simulation nondeter-
ministic [10,12] and that the exact breakup of the crown into
droplets is expected to be randomly different every time. We
see minor artifacts at the bottom of the cavity for FP32/P161S,
but otherwise no qualitative differences in random crown
breakup.

To be able to obtain statistics of ejected droplets and
particles, we run the simulation 100 times each with
FP32/FP32, FP32/FP16S, FP32/FP16C, and FP32/P161S.
The microplastic particles each time are initialized at different
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FIG. 14. A 4 mm diameter raindrop impacting a deep pool at
8.8 m

s terminal velocity, illustrated at times t ∈ {0, 1, 2, 3, 4, 5} ms
after impact as used in Ref. [10].

random positions, resulting in slightly different random crown
breakup. Ejected droplets that touch the top of the simulation
box are measured and then deleted as detailed in Ref. [10]. In
histograms of the size, volume, and particle count depending
on droplet diameter (Fig. 15), we see no significant differences
across the data sets.

To conclude this section, we find that all FP32/FP16S,
FP32/FP16C, and FP32/P161S are able to recreate the results
of FP32/FP32 in raindrop impact simulations without nega-
tive impact on the accuracy of the results, while significantly
reducing the memory footprint of these simulations. This in
turn enables simulations higher lattice resolution, potentially
increasing accuracy by resolving smaller droplets.

V. MEMORY AND PERFORMANCE COMPARISON

For GPUs, the most efficient streaming step implementa-
tion [63] is the One-Step-Pull scheme (AB-Pattern) with two
copies of the DDFs in memory, because the noncoalesced
memory read penalty is lower than the noncoalesced write
penalty on GPUs [12,15,30,33,35,37,38,51,53,54], see Fig. 22
in the Appendix. One-Step-Pull further greatly facilitates im-
plementing LBM extensions like Volume-of-Fluid, so it is a
popular choice. Our FluidX3D base implementation (no-slip
bounce-back boundaries, no extensions, as in Listing 2) with
DdQq velocity set has memory requirements per lattice point
as shown in Table III. For D3Q19, going from FP32/FP32 to
FP32-16x reduces the memory footprint by ≈45%, to 93 bytes
per node. If 16-bit compression was combined with in-place

FIG. 15. (a) The size distribution of droplets, (b) the distribution
of ejected fluid volume by droplet diameter, and (c) the distribution of
microplastic particles in droplets for 100 simulations each conducted
with FP32/FP32, FP32/FP16S, FP32/FP16C and FP32/P161S.

streaming schemes like AA-Pattern [34], Esoteric-Twist [62],
Shift-and-Swap-Streaming [59], or the simple Esoteric-Pull
[9], the memory footprint can even be reduced by ≈67%, to
only 55 bytes per node.

Although our main goal with FP16 is to reduce mem-
ory footprint and allow for larger simulation domains, as a
side effect, performance is vastly increased as a result of
less memory transfer in every LBM time step. For our base
implementation with the DdQq velocity set, the amount of
memory transfers per lattice point per time step is shown in
Table IV. Writing velocity and density to memory in each
time step is not required for LBM without extensions. The-
oretical speedup from FP32/FP32 to FP32/16-bit is 80% for
all velocity sets and swap algorithms.

While most LBM implementations are limited to one
particular hardware platform—either CPUs [67–79], Nvidia

TABLE III. Memory requirements in byte per lattice point of
LBM floating-point variants for the One-Step-Pull swap algorithm
with two copies of the DDFs for the DdQq velocity set.

�u ρ flags fi
∑

FP64/FP64 8 d 8 1 16 q 8 d + 9 + 16 q
FP64/FP32 8 d 8 1 8 q 8 d + 9 + 8 q
FP32/FP32 4 d 4 1 8 q 4 d + 5 + 8 q
FP32/16-bit 4 d 4 1 4 q 4 d + 5 + 4 q
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TABLE IV. Memory transfer in byte per lattice point per time
step of LBM floating-point variants for the DdQq velocity set.

flags fi
∑

FP64/FP64 q 16 q 17 q
FP64/FP32 q 8 q 9 q
FP32/FP32 q 8 q 9 q
FP32/16-bit q 4 q 5 q

GPUs [30–56], CPUs and Nvidia GPUs [18–29] or mobile
SoCs [122,123]—only few use OpenCL [5–17]. With
FluidX3D also being implemented in OpenCL, we are able to
benchmark our code across a large variety of hardware, from
the world’s fastest data-center GPUs over gaming GPUs and
CPUs to even the GPUs of mobile phone ARM SoCs. This
enables us to determine LBM performance characteristics
on various hardware microarchitectures. In Fig. 16, we
show performance and efficiency on various hardware for
D3Q19 SRT without extensions (only no-slip bounce-back
boundaries are enabled in the code). The benchmark setup
consists of a cubic box without any boundary nodes and with
periodic boundary conditions in all directions. The standard
domain size for the benchmark is 2563, except where device
memory is not enough; there we use the largest cubic box that
fits into memory.

We group the tested devices into four classes with different
performance characteristics:

(1) FP64-capable dedicated GPUs (high FP64:FP32
compute ratio) provide excellent efficiency for FP64/xx,
FP32/FP32, and FP32/FP16S. They have such fast mem-

ory bandwidth that the FP32 ↔ FP16C software conversion
brings FP32/FP16C from the bandwidth limit into the com-
pute limit, reducing its efficiency.

(2) Non-FP64-capable dedicated GPUs (low FP64:FP32
compute ratio) have a particularly high FP32 arithmetic
hardware limit, so even with the FP32 ↔ FP16C software
conversion the algorithm remains in the memory bandwidth
limit. FP32/xx efficiency is excellent except for older Nvidia
Kepler. However, due to the poor FP64 arithmetic capabilities,
FP64/xx efficiency is low as LBM here runs entirely in the
compute limit rather than memory bandwidth limit. Surpris-
ingly, FP64/FP32 runs even slower than FP64/FP64. This is
because there is additional overhead for the FP64 ↔ FP32
cast conversion in the compute limit, despite less memory
bandwidth being used.

(3) Integrated GPUs (iGPUs) overall show low perfor-
mance and low efficiency. This is expected due to the slow
system memory and cache hierarchy. Some older models do
not support FP64 arithmetic at all.

(4) CPUs also show low performance and low efficiency.
The low efficiency on CPUs is less of a property of the im-
plementation or a result of OpenCL, and more related to CPU
microarchitectures in general [67]. Other native CPU imple-
mentations of the LBM have equally low hardware efficiency
[67,68,71,73] as a result of multilevel caching, inter-CPU
communication, and other hardware properties unfavorable
for LBM. To illustrate this further, our implementation runs
about as fast on the Mali-G72 MP18 mobile phone GPU as
CPU codes on between 2 and 16 cores, depending on the CPU
model [19,23,27,67,68,71,73,86].

FIG. 16. Performance of FluidX3D with D3Q19 SRT on different hardware (code as in listing 2). The unit MLUPs/s is an acronym for
mega lattice updates per second, meaning how many times 106 LBM lattice points are computed every second. To obtain the efficiency, we
divide the measured MLUPs/s by the data sheet memory bandwidth times the number of bytes transferred per lattice point and time step
(Table IV). Performance characteristics differ depending on the FP64 arithmetic capabilities as indicated by the FP64:FP32 compute ratios of
the microarchitectures. The two GCDs of the MI250 are separate GPUs with 64 GB unified memory each, similar to dual-GPU cards such as
the Tesla K80; driver 3423.0 (HSA1.1,LC) and ROCm 5.1.3 was used. CPU benchmarks are on all cores. Values in Table V.
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FIG. 17. Roofline model analysis of FluidX3D with the D3Q19
velocity set, running on an Nvidia Titan Xp GPU. For each floating-
point type, the three data points (left to right) correspond to the SRT,
TRT, and MRT collision operators. The arithmetic hardware limit is
different for FP64/xx and FP32/xx, so we use two plots.

It is of note that performance on CPUs with large cache
greatly depends on the domain size: If a large fraction of the
domain fits into the L3 cache, efficiency (relative to memory
bandwidth) is significantly better. Our CPU tests use a domain
size of 2563, so only an insignificant ≈1% is covered by L3
cache—a scenario representative of typical applications.

On the vast majority of hardware, we actually reach the the-
oretical 80% speedup as indicated by the hardware efficiency
remaining equal for FP32/FP32 and FP32/FP16S. Some
hardware, namely, the Nvidia Turing and Volta microarchi-
tectures, do actually reach 100% efficiency with FP32/FP32
and FP32/FP16S. The Nvidia RTX 2080 Ti is at 100% ef-
ficiency even with FP32/FP16C, since the Nvidia Turing
microarchitecture can do concurrent floating-point and inte-
ger computation and the 2080 Ti has high enough compute
power per memory bandwidth to entirely remain in the mem-
ory bandwidth limit. Some efficiency values are even above
100% as Nvidia Turing and Ampere A100 are capable of
memory compression to increase effective bandwidth beyond
the memory specifications [124,125]. Nvidia Pascal GeForce
and Titan GPUs (that lack ECC memory) lock into P2 power
state with reduced memory clock for compute applications to
prevent memory errors [126], lowering maximum bandwidth
and making perfect (data sheet) efficiency impossible.

FP32/P160S and FP32/P162C performance is very similar
to FP32/FP16C (data not shown), since the conversion needs
to be emulated in software as well. FP32/P161S performance
is a bit lower because the conversion algorithm is slightly
more complex.

To better understand why performance is excellent with
FP32/xx but not with FP64/xx on non-FP64-capable GPUs,
we perform a roofline analysis [64,107] for the Nvidia Ti-
tan Xp in Fig. 17. The number of arithmetic operations and
memory transfers is determined by automated counting of the
corresponding PTX assembly instructions [112] of the stream-
collide kernel. We note that we count the arithmetic intensity
as the sum of floating-point and integer operations because the
Pascal microarchitecture computes floating-point and integer
on the same CUDA cores. For D3Q19 SRT FP32/FP32, for

example, we count 255 floating-point operations and 248 in-
teger operations. LBM performance scales proportionally to
memory bandwidth, which is indicated by diagonal lines. The
factor of proportionality is different for FPxx/64 (323 byte
memory transfer per LBM time step), FPxx/32 (171 byte),
and FPxx/16 (95 byte) as the amount of memory transfer is
different (Table IV). FP16 reduces the number of memory
transfers, so the arithmetic intensity (number of arithmetic
operations divided by memory transfers) is increased. The
manual conversion from and to FP16C significantly increases
the number of arithmetic operations, further raising arithmetic
intensity. Nevertheless, even with the arithmetic-heavy matrix
multiplication of the MRT collision operator, all data points
are still within the memory bandwidth limit and thus almost
equally efficient compared to FP32. Actual memory clocks
during the benchmark are 3.5% lower than the data sheet
value (hardware limit) due to the Titan Xp locking into P2
power state [126], inhibiting perfect efficiency for FP32/xx.
In contrast, FP64/xx is in the compute limit, greatly reducing
performance. The data points in the compute limit can be a
bit above the hardware limit if core clocks are boosted beyond
official data sheet values.

VI. CONCLUSIONS

In this paper, we studied the consequences of the employed
floating-point number format on accuracy and performance
of lattice Boltzmann simulations. We used six different test
systems ranging from simple, pure fluid cases (Poiseuille flow,
Taylor-Green vortices, Karman vortex streets, lid-driven cav-
ity) to more complex situations such as immersed-boundary
simulations for a microcapsule in shear flow or a Volume-of-
Fluid simulation of an impacting raindrop. For all of these,
we thoroughly compared how FP64, FP32, FP16, and posit16
(mixed) precision affect the accuracy of the LBM. In the
mixed variants, a higher precision floating-point format is
used for arithmetics and a lower precision format is used for
storing the DDFs. Based on the observation that a number
range of ±2 is sufficient for storing DDFs, we designed two
customized 16-bit number formats specifically tailored to the
needs of LBM simulations: a custom 16-bit floating-point
format (FP16C) with halved truncation error compared to
the standard IEEE-754 FP16 format by taking one bit from
the exponent to increase the mantissa size and a specifically
designed asymmetric posit variant (P162C). Conversion to
these formats can be implemented highly efficiently and code
interventions are only a few lines.

In all setups that we have tested and for the majority of pa-
rameters, FP32 turned out to be as accurate as FP64, provided
that proper DDF-shifting [66] is used. Our custom FP16C
format considerably diminished errors and noise and turned
out to be a viable option for FP32/16-bit mixed precision in
many cases. 16-bit posits with their variable precision have
shown to be very compelling options too. Especially, P161S
in some cases could beat our FP16C. In other cases, how-
ever, where the DDFs are outside the most favorable number
range, the simulation error is increased significantly for the
FP32/posit16 simulations.

Regarding performance, we find that pure FP64 runs very
poorly on the vast majority of GPUs, with the exception of
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very few data-center GPUs with extended FP64 arithmetic
capabilities such as MI250/MI100/A100/V100(S)/P100.
FP64/FP32 mixed precision can be almost as fast as pure
FP32 on these special data-center GPUs. However, somewhat
counterintuitively, on all GPUs with poor FP64 capabil-
ities, FP64/FP32 is even slower than pure FP64 due to
the conversion overhead. In general, pure FP32 then is a
better choice since it enables excellent computational ef-
ficiency across all GPUs, especially considering that it is
equally accurate to FP64 in all but edge cases. Computational
efficiency is also excellent for FP32/FP16S mixed preci-
sion across all GPUs, reaching a maximum performance of
15455 MLUPs (D3Q19) on a single 40 GB Nvidia A100. On
almost all GPUs that we have tested, we see the theoreti-
cal speedup of 80% that FP32/16-bit mixed precision offers
for D3Q19, alongside 45% reduced memory footprint. Our
custom format FP32/FP16C requires manual floating-point
conversion which is heavy on integer computation. Never-
theless, FP32/FP16C runs efficiently on most GPUs with
good FP32 arithmetic capabilities compared to their respec-
tive memory bandwidth and the theoretically expected 80%
speedup can be achieved.

In conclusion, we show that pure FP32 precision is suf-
ficient for most application scenarios of the LBM and that

with our specifically tailored FP16C number format, in many
cases even mixed FP32/FP16C precision can be used without
significant loss of accuracy.
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APPENDIX

1. The LB3D code

While in the most of this paper, we used the FluidX3D code [6–12], we also confirmed selected results with the LB3D
lattice Boltzmann simulation package [79]. For this, we ported the FP64/FP64 routines to FP32/FP32 also in LB3D. LB3D
is an MPI-based, general-purpose simulation package that includes various multicomponent and multiphase lattice Boltzmann
methods, coupled to point particle molecular dynamics, discrete element methods [127], and immersed boundary [128,129]
methods, as well as finite element solvers for advection-diffusion problems, including the Nernst-Planck equation [130]. For the
Poiseuille test, we used second-order accurate, midgrid bounce-back boundary conditions.

2. LBM equations in a nutshell

The coloring indicates the level of precision for the equations below:
lower precision storage, conversion, higher precision arithmetic.

a. Without DDF-shifting

(1) Streaming:
f temp
i (�x, t ) = f A

i (�x − �ei, t ). (A1)

(2) Collision (SRT):

ρ(�x, t ) =
∑

i

f temp
i (�x, t ), (A2)

�u(�x, t ) = 1

ρ(�x, t )

∑
i

�ci f temp
i (�x, t ), (A3)

f eq
i (�x, t ) = f eq

i (ρ(�x, t ), �u(�x, t )) = wi ρ ·
(

(�u ◦ �ci )2

2 c4
+ �u ◦ �ci

c2
+ 1 − �u ◦ �u

2 c2

)
, (A4)

f B
i (�x, t + 
t ) =

(
1 − 
t

τ

)
f temp
i (�x, t ) + 
t

τ
f eq
i (�x, t ). (A5)

b. With DDF-shifting

(1) Streaming:
f temp
i (�x, t ) = f A

i (�x − �ei, t ). (A6)
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(2) Collision (SRT):

ρ(�x, t ) =
(∑

i

f temp
i (�x, t )

)
+ 1, (A7)

�u(�x, t ) = 1

ρ(�x, t )

∑
i

�ci f temp
i (�x, t ), (A8)

f eq-shifted
i (�x, t ) = f eq-shifted

i (ρ(�x, t ), �u(�x, t )) = wi ρ ·
(

(�u ◦ �ci )2

2 c4
− �u ◦ �u

2 c2
+ �u ◦ �ci

c2

)
+ wi (ρ − 1), (A9)

f B
i (�x, t + 
t ) =

(
1 − 
t

τ

)
f temp
i (�x, t ) + 
t

τ
f eq
i (�x, t ). (A10)

3. List of physical quantities and nomenclature

Quantity SI-units Defining equation(s) Description

�x m �x = (x, y, z) 3D position in Cartesian coordinates

t s – Time


x m 
x := 1 Lattice constant (in lattice units)


t s 
t := 1 Simulation time step (in lattice units)

c m
s c := 1√

3

x

t Lattice speed of sound (in lattice units)

ρ
kg
m3 ρ = ∑

i fi Mass density

�u m
s �u = ∑

i �ci fi Velocity

fi
kg
m3 (A1) Density distribution functions (DDFs)

f eq
i

kg
m3 (A4) Equilibrium DDFs

i 1 0 � i < q LBM streaming direction index

q 1 q ∈ {7, 9, 13, 15, 19, 27} Number of LBM streaming directions

�ci
m
s [12], Eq. (11) Streaming velocities

�ei m �ei = �ci 
t Streaming directions

wi 1 [12], [Eq. (10)],
∑

i wi = 1 Velocity set weights

τ s τ = ν

c2 + 
t
2 LBM relaxation time

ν m2

s ν = μ

ρ
Kinematic shear viscosity

�f kg
m2 s2

�f = �F
V Force per volume

(Lx, Ly, Lz ) (m, m, m) Lx Ly Lz = V Simulation box dimensions

g m
s2 g := 9.81 m

s2 Gravitational acceleration

σ
kg
s2 – Surface tension coefficient

4. Measured number format characteristics

FIG. 18. Measured accuracy characteristics of the number formats investigated in this paper. The number of decimal digits for a given
number x is computed via − log10(| log10(

xrepresented

x )|) [90,111,113]. Only the local minima are the relevant criterion for the error. Note that this
definition for the number of decimal digits is off from the log10(2nm+1) definition by about 0.4.
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5. Numerical values of fi and f shifted
i for the lid-driven cavity (FP32/FP32)

FIG. 19. Numerical values of fi and f shifted
i for the lid-driven cavity (FP32/FP32, Re = 1000, Ma = 0.17, grid resolution L = 128) at

various points in time.
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6. Numerical values of fi and f shifted
i for all setups (FP32/FP32)

FIG. 20. Numerical values of fi and f shifted
i for the lid-driven cavity (FP32/FP32, Re = 1000, Ma = 0.17, after t = 100 000 time steps) at

various grid resolutions.
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FIG. 21. Numerical values of fi and f shifted
i for all setups (FP32/FP32).

7. Properties of benchmarked hardware
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8. Memory benchmarks

FIG. 22. Synthetic OpenCL memory benchmarks to measure coalesced/misaligned read/write performance. The misaligned write penalty
is much larger than the misaligned read penalty across almost all tested devices. Values in Table V.
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9. Ultrafast conversion algorithms
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Listing 1: OpenCL C macros for regular FP32, for FP16S using hardware-accelerated IEEE-754 FP16 floating-point conversion
and for our FP16C format with calls to our manual floating-point conversion functions. Manual floating-point conversion
functions for FP32 ↔ FP16C (float↔half) in OpenCL C. We also provide macros and conversion algorithms for FP32 ↔
P160S/P161S/P162C posit formats. The saturation term in the algorithms can be omitted if it is made sure that larger than
maximum numbers are never used, which is the case in this LBM application.
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10. LBM core of the FluidX3D OpenCL C implementation (D3Q19 SRT FP32/xx)
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Listing 2: LBM core of the FluidX3D OpenCL C implementation (D3Q19 SRT FP32/xx).
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