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Abstract
Biological cells are built up from different constituents of varying size and stiffness which all contribute to the cell’s mechani-
cal properties. Despite this heterogeneity, in the analysis of experimental measurements one often assumes a strongly sim-
plified homogeneous cell and thus a single elastic modulus is assigned to the entire cell. This ad-hoc simplification has so 
far mostly been used without proper justification. Here, we use computer simulations to show that indeed a mechanically 
heterogeneous cell can effectively be replaced by a homogeneous equivalent cell with a volume averaged elastic modulus. To 
demonstrate the validity of this approach, we investigate a hyperelastic cell with a heterogeneous interior under compression 
and in shear/channel flow mimicking atomic force and microfluidic measurements, respectively. We find that the homogene-
ous equivalent cell reproduces quantitatively the behavior of its heterogeneous counterpart, and that this equality is largely 
independent of the stiffness or spatial distribution of the heterogeneity.

Keywords Cell mechanics · Atomic force microscopy · Cell elasticity · Shear flow · Cell nucleus

1 Introduction

Cellular mechanics is an intensively investigated topic and a 
variety of experimental methods has been developed to char-
acterize the elasticity of biological cells (Kollmannsberger 
and Fry 2011; Wu et al. 2018; Guck 2019). One of the main 
techniques is atomic force microscopy (Guz et al. 2014; 
Lulevich et al. 2006; Ladjal et al. 2009; Hecht et al. 2015; 
Sancho et al. 2017; Müller et al. 2021; Hobson et al. 2020; 
Abuhattum et al. 2022). Other micromechanical evaluation 
techniques include the flow through highly confined micro-
channels (Urbanska et al. 2020; Otto et al. 2015; Fregin et al. 
2019; Rowat et al. 2013; Lange et al. 2017; Toepfner et al. 

2018; Lange et al. 2015), or mechanical testing in larger 
channels (Gerum et al. 2022). Both kinds of experiments are 
most commonly analyzed using a mechanical model which 
treats the entire cell as one continuous entity endowed with 
a single elastic modulus and, sometimes, viscosity. This sim-
ple cell model has also been used in a series of computer 
simulations (Rosti et al. 2018; Saadat et al. 2018; Müller 
et al. 2021; Wittwer et al. 2023; Müller et al. 2023).

At the same time, however, it is known that the differ-
ent constituents of the cell, e. g., cortex, cytoplasm, and 
especially the nucleus, all have different mechanical prop-
erties (Cordes et al. 2020; Zhelev et al. 1994; Lange et al. 
2017; Lykov et al. 2017; Mietke et al. 2015; Caille et al. 
2002; Cao et al. 2013; Kolker et al. 2022). Often the size 
of these constituents, especially that of the stiff nucleus, is 
of the same order as the size of the cell as a whole. This 
makes the application of classical homogenization theory 
difficult as there is no obvious separation of length scales. 
It is thus tempting to ask why the simplistic assumption of 
a homogeneous cell appears to work so surprisingly well in 
many situations.

In this work, we therefore systematically probe the pos-
sibility to substitute any heterogeneously constituted cell by 
a simple homogeneous cell with a single effective elastic 
Young’s modulus. For that, we first construct a well-defined 
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heterogeneous cell with an inclusion of variable stiffness, 
size, and position. This inclusion mimicks the mechani-
cal influence of the cell nucleus which due to its different 
physiological composition is mechanically stiffer than the 
surrounding soft cytoskeleton. As a second model system, 
we consider a heterogeneous cell with a spatially random 
stiffness distribution. From the volume averaged mean of the 
constituents’ Young’s moduli we define an effective Young’s 
modulus corresponding to a homogeneous equivalent cell. 
With these at hand, we perform AFM compression simula-
tions as well as microfluidic shear flow and channel flow 
computations. We find excellent agreement of the result-
ing force versus deformation curves in compression and 
strain versus fluid forces in shear and mostly also in channel 
flow. Only at high flow rates in channel flow small devia-
tions between the heterogeneous cell and its homogeneous 
equivalent start to appear. Through variation of stiffness, 
size, position, and shape, of the inhomogeneity we show that 
neither of these factors have a significant impact on the cell’s 
mechanical behavior. Any kind of intracellular mechanical 
diversity can hence be effectively described using our pro-
posed homogeneous equivalent cell.

2  Methods and setup

2.1  Cell models

2.1.1  Heterogeneous cell with nucleus

Our first model is a heterogeneous elastic cell with a stiff 
nucleus surrounded by a softer cytoskeleton. We model 
this nucleated cell as a sphere of radius Rc which contains 
a spherical inclusion of radius Rn inside the cell volume, 
as shown in Fig. 1a. This model will be labeled “Nucleus” 
in the plots. We discretize both volumes using tetrahedrons 
and apply the neo-Hookean strain energy computations from 
(Müller et al. 2021) in both parts. We checked that similar 
results are obtained when using the Mooney–Rivlin strain 
energy as detailed in Appendix. Properties differentiating 
between the nucleus and the cytoskeleton are distinguished 
by the subscripts “ n ” and “ c ”, respectively. To parametrize 
the stiffness we choose the Young’s moduli En and Ec of the 
nucleus and the cytoskeleton, respectively. The Poisson’s 
ratio is � = 0.48 in all simulations, which ensures sufficient 
incompressibility while maintaining numerical stability. We 
note that in this work we only consider the elastic (and partly 
viscoelastic, see Sect. 2.2.2) response of the cell. Plastic 
deformation, which requires an active rearrangement of the 
cytoskeleton, is not considered in this work.

For our systematic analysis, we define the stiffness ratio 
and the size ratio

with 𝛾 > 1 describing a nucleus stiffer than the rest of the 
cell and 0 < 𝜆 < 1 . In some simulations, we position the 
nucleus offset from the cell’s geometrical center by d in units 
of the cell radius. Through variation of the control param-
eters � , � , and d , any kind of spherical inclusion into the cell 
volume is covered. We discuss the effect of an ellipsoidal 
inhomogeneity in the last paragraph of Sect. 3.1.

As a reference configuration, from which variations of 
the control parameters start, we choose � = 2 , � =

1

2
 , and 

d = 0.

(1)� =
En

Ec

and � =
Rn

Rc

,

Fig. 1  a Illustrations of our heterogeneous cells and their homogene-
ous equivalent showing the stiffness ratio � of the individual tetrahe-
dra. b  Illustration of an example heterogeneous cell under compres-
sion at different values of the deformation � . c  The stationary cell 
shape of a cell with a centered inhomogeneity in linear shear flow 
with increasing capillary number Ca (number in image corresponds 
to Ca ⋅ �eff , see Fig.  5). d Our heterogeneous cell flowing through a 
cylindrical capillary migrates towards the symmetry axes while main-
taining an ellipsoidal shape. At the center, it assumes a bullet-like 
shape
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2.1.2  Random heterogeneous cell model

As our second model system of a heterogeneous cell, we 
randomly assign a stiffness ratio �i ∈ [1, 10] to every of the 
Ntet individual tetrahedra of the mesh, as shown in Fig. 1a. 
These cells will be labeled “Random” in plots.

2.1.3  Homogeneous equivalent cell model

The purpose of our work is to show that both heterogene-
ous cell models introduced above show identical mechanical 
behavior as an equivalent homogeneous cell with properly 
assigned effective elastic moduli. An illustration is shown 
in Fig. 1a and will be labeled “Homogeneous” in upcoming 
plots. Discretization and force computation in the homoge-
neous cell model proceed in the same way as for the hetero-
geneous models and as in earlier works (Müller et al. 2021).

To connect a nucleated heterogeneous cell with its homo-
geneous equivalent, we compute the effective Young’s mod-
ulus of the homogeneous equivalent as

Analogously for our random heterogeneous cell model, the 
effective Young’s modulus is computed as

from the volumes Vi and the Young’s moduli Ei = �iEc of the 
Ntet individual tetrahedra. We note that these definitions cor-
respond to the so-called Voigt modulus in composite mate-
rial theory (Voigt 1889). For the random heterogeneous cell, 
we choose the volume averaged stiffness ratio as �eff ≈ 5.5.

2.2  Simulation setups

2.2.1  Cell simulations under compression

To mimic AFM experiments, we compress our model cells 
between an upper and a lower plate using the algorithm 
described in (Müller et al. 2021). Among others, this setup 
closely approximates the experimental situation of col-
loidal probe measurements where a large sphere is used to 
indent the cell, see e.g. (Lulevich et al. 2006). From these 
quasistatic simulations we obtain the normal force F 
exerted by the upper plate onto the cell as well as the 
resulting cell deformation as shown in Fig. 1b. Using the 
plate-plate distance D, we define the dimensionless com-
pression ratio as � = 1 −

D

2Rc

 . We perform our simulations 

(2)Eeff =
1

V

(

VcEc + VnEn

)

=

[

1 + (� − 1)�3
]

Ec.

(3)Eeff =
1

V

Ntet
∑

i=1

ViEc�i = Ec�eff ,

up to very large deformations of � = 75% for parameters 
� ∈ 1, 2, 10, 20 and � ∈ 0.1, 0.2,… , 0.9 , as well as for our 
random heterogeneous cell. We then perform another set 
of simulations with our homogeneous equivalent cell with 
the effective Young’s modulus from (2) and (3).

2.2.2  Cell simulations in shear flow

As a first flow scenario we use a linear shear flow, where 
our initially spherical cell deforms into an ellipsoidal 
body that undergoes a tank-treading motion. To do so, we 
couple our hyperelastic tetrahedralized mesh to a Lattice 
Boltzmann flow simulation (Krüger et al. 2017) via an 
immersed-boundary algorithm using the same procedure 
as in (Müller et al. 2021, 2023). For the simulations we use 
the ESPResSo package (Roehm and Arnold 2012; Lim-
bach et al. 2006; ICP-Stuttgart 2006). For simplicity, the 
interior of the cell is chosen to have the same viscosity as 
the outer fluid.

Since the cell assumes an ellipsoidal shape, we choose 
the Taylor deformation parameter  (Müller et al. 2021; 
Saadat et al. 2018)

with the ellipsoid’s major and minor semi-axis a and b, 
respectively, as our measure for the cell deformation. In 
analogy to the normal force introduced in section 2.2.1, the 
strength of the shear flow is best characterized using the 
dimensionless shear rate, or capillary number

where � denotes the surrounding fluid’s dynamic viscosity 
and � =

�ux

�y
 the constant velocity gradient. Commonly, the 

shear modulus � is used as stiffness parameter for this defini-
tion. It relates to the Young’s modulus of the previous sec-
tion via the Poisson’s as E = 2(1 + �)� . Hence, the stiffness 
ratios � and �eff have the identical value when defined analo-
gously to (1) and (3) via the shear moduli of the nucleus and 
the cytoskeleton, respectively �n and �c.

In Fig. 1c, we show the stationary shape of our hetero-
geneous cell at various Ca . In addition to the ellipsoidal 
deformation of the entire cell, we find that the centered 
nucleus, too, deforms into an ellipsoidal manner. However, 
its deformation is visibly less pronounced. We perform our 
simulations for � ∈ 1, 2, 10, 20 and d ∈ 0, 0.45 , and with 
our random heterogeneous cell. Using the effective shear 
modulus �eff in (5), we compare the heterogeneous cells’ 
behavior with the master curve describing the homogene-
ous equivalent cell.

(4)D =
a − b

a + b

(5)Ca =
��

�eff

= 2(1 + �)
��

Eeff

,
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2.2.3  Cell simulations in channel flow

In our second flow scenario, we place the initially spherical 
cell inside a cylindrical channel with radius Rch = 50 μm , 
where an axial pressure gradient G drives the Poiseuille 
flow (Müller et al. 2020). Here, we need to distinguish two 
important cases as illustrated in Fig. 1d: (i) When placed 
off-centered the cell will assume an approximately ellipsoi-
dal shape according to the local shear rate. Recently, it has 
been shown experimentally (Gerum et al. 2022) and numeri-
cally (Müller et al. 2023), that a local shear flow approxi-
mation is valid for microfluidic and pipe flow applications, 
given that cells flow off-centered. Due to the fluid’s shear 
stress, however, the cell continuously migrates from its 
starting point towards the center where the local shear flow 
approximation becomes insufficient.

(ii) At the channel center the cell assumes a bullet-like 
shape due to the symmetrical flow conditions as shown in 
Fig. 1d. We perform our simulations for � ∈ 2, 10, 20 and 
compare the shape to these to their homogeneous equivalent 
cell. We also calculate the stress each cell experiences in the 
center of the channel by averaging over the von Mises stress 
of all tetrahedra weighted with their undeformed volume. 
The von-Mises stress is an invariant of the Cauchy stress 
tensor quantifying multiaxial loading using a single scalar 
value. It is calculated like so:

Where �i are the eigenvalues of the Cauchy stress tensor, the 
so-called principal stresses.

3  Results

3.1  Cells under compression

We start with the nucleated cell model from Sect. 2.1.1 and 
perform compression simulations as described in Sect. 2.2.1 
to mimic the situation of an AFM experiment. The ratio 
between nucleus and cell size is � =

1

2
 and the nucleus is 

placed at the center of the cell. When increasing the stiffness 
ratio � at a constant size of the nucleus under compression, 
we find that—as expected—the force needed to compress the 
cell to a certain deformation � increases. This can be seen in 
Fig. 2, where we plot the dimensionless force F∕(EcR

2
c
) ver-

sus the deformation � . We note that the normalization factor 
contains the Young’s modulus of the cytoskeleton Ec and 
therefore is identical for all simulations even with different � . 
We achieve the variation of the stiffness ratio via adjustment 
of the Young’s modulus of the nucleus while the Young’s 

(6)�vM =

√

1

2

[

(�1 − �2)
2 + (�2 − �3)

2 + (�3 − �1)
2
]

modulus of the cytoskeleton remains untouched. The results 
however are unchanged if instead the Young’s modulus of 
the cytoskeleton is varied (see Appendix B). In the same 
manner, we plot in Fig. 2 the data obtained from the simu-
lations performed with the corresponding homogeneous 
equivalent cells as lines. We find that for almost the entire 
range of nuclear stiffnesses the deviation from the homoge-
neous equivalent cell is insignificant. A certain deviation 
can only be seen for the largest stiffness ratio � = 20 which 
however is most likely beyond the range exhibited by typi-
cal cells. Interestingly, our data for � = 10 matches perfectly 
with its homogeneous equivalent, whereas the differences for 
other values of � deviate in different directions. While for 
1 < 𝛾 < 10 , the heterogeneous cell exhibits slightly stronger 
strain hardening than the homogeneous equivalent cell, for 
𝛾 > 10 the strain hardening is instead slightly decreased. We 
include in the figure the random heterogeneous cell from 
Sect. 2.1.2 which also shows excellent agreement with its 
homogeneous equivalent.

To demonstrate the agreement in a more quantitative way, 
we non-dimensionalize the force using the effective Young’s 
modulus (2)

which is shown in Fig. 3a. Due to this non-dimensional-
ization, all data for homogeneous cells collapse onto a 
single master curve. The data of the heterogeneous cells 
only slightly deviate from this master curve in different 
directions, which allows us to assess clearly the quality of 
the homogeneous equivalent description. This is further 

(7)F∗ =
F

EeffR
2
c

,

Fig. 2  The force versus deformation curve of heterogeneous nucle-
ated cells with constant nuclear size ratio � =

1

2
 and varying stiffness 

ratio � (dots). Increasing the stiffness of the nucleus increases the 
overall force necessary to compress the cell. Lines show the homoge-
neous equivalent cell for each � which are in excellent agreement for 
� = 2, 10 and still in reasonable agreement for � = 20



Mechanical complexity of living cells can be mapped onto simple homogeneous equivalents  

visualized in the inset of Fig. 3a, where additional values of 
� are added as well.

Having demonstrated the validity of the homogeneous 
equivalent for � =

1

2
 , we now proceed to vary the size of 

the nucleus at constant stiffness � = 2 . The two limiting 
cases are � = 0 (all cytoskeleton) and � = 1 (all nucleus). In 
Fig. 3b, the resulting normalized force (7) versus deforma-
tion curves for � = 0.1 , � = 0.7 and � = 0.9 all show very 
good agreement with their homogeneous equivalent. Again, 
we use an inset into Fig. 3b to assess more precisely even 
small deviations. We note that the deviation attains a maxi-
mum around � ≈ 0.7 which is close to � = 2

−
1

3 ≈ 0.79 as 
would be obtained for equal volumes of cytoskeleton and 
nucleus.

Next, we move the inhomogeneity ( � = 2 and � =
1

2
 ) away 

from the center to a positions very close to the cell surface, 
i. e., d = 0.45 . As illustrated in Fig. 4a, we denote with x the 
direction parallel to the plates and with y the perpendicular 
direction. The force versus deformation curves in Fig. 4a 
show almost perfect overlap, thus demonstrating–somewhat 
surprisingly–that the position of the nucleus has no influence 

on the overall mechanical behavior of the cell in AFM com-
pression experiments.

Finally, we alter the shape of the nucleus and replace the 
centered spherical nucleus with an ellipsoid of equal vol-
ume with semi-axes a ≈ 0.8Rc , b = c ≈ 0.4Rc . We choose 
again the parallel (x) and perpendicular (y) alignment of the 
major semi-axis, which we compare to the centered spheri-
cal nucleus ( � =

1

2
 ) denoted by ”ref”, as shown in Fig. 4b. 

The resulting force versus deformation curves for ( � = 2 ) in 
Fig. 4b underline that a variation of the nucleus shape effec-
tively does not affect the compression behavior of a cell. Due 
to imperfections in the computational mesh, cells with their 
ellipsoidal nucleus aligned along the y-axis tend to topple 

Fig. 3  a  The quality of the homogeneous equivalent when varying 
the stiffness ratio � can be visualized using the normalized force F∗ 
(7). b Variation of the volume ratio � (1) instead of � shows similarly 
good agreement

Fig. 4  a Variation of the position of the nucleus along two independ-
ent axes does not affect the accuracy of the homogeneous equivalent. 
b A nucleus with ellipsoidal shape (but same volume) does not nota-
bly affect the force versus deformation behavior independent of its 
orientation
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during deformation when using large stiffness ratios (broken 
rotational symmetry, non-zero torque). We therefore discuss 
here only the � = 2 case, where no toppling is present and 
the results of both geometries are accurate.

From the data in this section, we conclude that in com-
pression scenarios a heterogeneous cell can in practice be 
replaced with a homogeneous equivalent cell with a volume 
averaged Young’s modulus, since neither the stiffness differ-
ence nor the size, the position, or the shape, of the inhomo-
geneity have a significant impact on the force necessary to 
produce a certain cell deformation. Furthermore, our results 
might open a novel route for estimating nuclear stiffness: 
treating the cell by a drug which affects cytoskeletal—but 
not nuclear–stiffness in a known way and measuring a series 
of cell stiffnesses would allow one to infer nuclear stiffness.

3.2  Cells in linear shear flow

Besides AFM measurements of cell deformation in shear 
flow has recently been introduced as an efficient characteri-
zation technique for cell mechanics (Gerum et al. 2022). We 
proceed to demonstrate the possibility of replacing hetero-
geneous cells with homogeneous cells also in this scenario. 
We start by putting an initially spherical heterogeneous cell 
( � = 2 , � =

1

2
 , and d = 0 ) in a linear shear flow with shear 

rate � . After a transient time span the cell shape becomes 
stationary (cf. Fig. 1c) and the cell undergoes a continuous 
tank-treading motion. To quantify the amount of cell defor-
mation we use the Taylor deformation parameter D intro-
duced in (4). To quantify the strength of the applied shear 
force, we use the Capillary number defined in (5).

In Fig. 5 we find excellent agreement between the het-
erogeneous nucleated cell and its homogeneous equivalent, 
when plotting the stationary value of D obtained from the 
simulation with � = 2 as a function of Ca . In accordance 
with the compression simulations of Fig. 2a, we find that 

the heterogeneous cell with nucleus at a stiffness ratio � = 2 
yields a slightly lower deformation than its homogeneous 
equivalent. Figure 5 furthermore contains results for � = 5 
and 10 which are generally also in very good agreement with 
their homogeneous equivalent over a wide range of defor-
mations. Analogous to Sect. 3.1 we achieve the variation 
of � by only tuning the shear modulus of the nucleus. The 
same results can be achieved via altering the cytoskeleton 
instead (see Appendix B). Unlike in our AFM simulations 
the degree of agreement between the inhomogeneous cell 
and its homogeneous counterpart depends visibly on the 
amount of strain the cells experience.

We next investigate the behavior of the cell when the 
nucleus is positioned away from the cell center. A time series 
of snapshots for a nucleus displacement d∥ = 0.45 within the 
shear plane is shown in Fig. 6a. These snapshots depict the 
tank-treading motion of the entire cell, where the nucleus 
produces a bump at the cell surface. This behavior is clearly 
reflected in the temporal dynamics of the Taylor deformation 
(4) shown in Fig. 6b, where D is plotted as function of time 
t. Interestingly, if instead the nucleus is displaced perpen-
dicular to the shear plane at d

⟂
= 0.45 , the same stationary 

behavior as for a centered nucleus is obtained in Fig. 6b. 
The time average of the deformation in this state is shown in 
Fig. 6c for both nucleus offsets as well as the corresponding 
homogeneous equivalent cell. It becomes clear that, despite 
the periodic oscillations for the nucleus displaced in-plane, 
the time-averaged deformation of cells with off-centered 
nuclei perfectly matches the homogeneous equivalent.

3.3  Cell in capillary flow

The final scenario which we consider in this work is a cell 
flowing through a microchannel as occurring, e.g., in RT-DC 
characterization experiments (Otto et al. 2015; Fregin et al. 
2019). The two major differences between the pressure 
driven flow through a microchannel and the simple shear 
flow scenario of the previous section are (i) the nonlinearity 
of the velocity profile and (ii)  the symmetry conditions at 
the channel axis.

When placing a homogeneous cell at the center of the 
channel at an average flow velocity of 5 mm/s, it assumes 
a stationary bullet-like shape as shown in previous works, 
e.g. (Müller et al. 2023). Figure 7a shows that this behavior 
is qualitatively retained for heterogeneous nucleated cells 
with stiffness ratios � = 2 , 10 and 20. The figure furthermore 
demonstrates reasonably good agreement with the shape of 
the homogeneous equivalent cell in the same flow. For higher 
� this is again somewhat surprising as the cytoskeleton in 
contact with the surrounding fluid is significantly softer for 
the heterogeneous cell (2.125 times softer at � = 10).

As a measure for the cell stress, we depict in Fig. 7b 
the time evolution of the average von Mises stress of our 

Fig. 5  Taylor deformation of the nucleated heterogeneous cell for dif-
ferent capillary number in shear flow. The solid lines represent the 
curves of their respective homogeneous equivalent cells
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heterogeneous cells and their homogeneous equivalent at 
low and high flow velocity. As the cell stress needs to 
counterbalance the fluid stress, it is not surprising that at 
low channel velocity (Fig. 7b-i, ii) the cell stress tends to 
a value independent of the cell geometry and stiffness. In 
addition, we find very good agreement between the het-
erogeneous and the homogeneous equivalent when the 
stiffness ratio � is tuned by varying the nucleus stiffness 
(Fig. 7b-i). If, however, we vary the cytoskeleton stiffness 
as shown in Fig. 7b-ii, we find a small, but notable devia-
tion for higher values of � for this system (this was not 
the case in the other systems considered so far as shown 
in Appendix B). This deviation can be explained by the 

fact that the nucleus is located on the symmetry axis of 
the channel where the fluid stress vanishes  (Müller et al. 
2020), while it becomes larger towards the edges of the 
cell and thus primarily acts on the cytoskeleton part of the 
cell. Therefore we can assume the influence of the nucleus 
to be substantially weaker here as compared to off-center 
flow, where the whole cell surface is subjected to large 

Fig. 6  a  Time series snapshots for the heterogeneous cell with 
nucleus displaced within the shear plane. Due to the rotation of the 
cellular material, the bump produced by the inhomogeneity travels 
around the cell. b Time development of the Taylor deformation D(t) 
for a heterogeneous cell with the nucleus displaced either within or 
perpendicular to the shear plane when compared to the time devel-
opment of a homogeneous cell. The case with the nucleus displaced 
within the shear plane shows small periodic oscillations. c Average D 
of the cell with off-centered nucleus compared to the data of Fig. 5a 
shows the validity of the homogeneous equivalent also for this situa-
tion

Fig. 7  a  Snapshots of the heterogeneous cell with nucleus and its 
homogeneous equivalent when flowing at the center of the channel 
for � = 2 , 10 and 20. The black area shows a slice of the homogene-
ous equivalent cell while the green/blue overlay depicts the heteroge-
neous cell with nucleus. b Time evolution of the average von-Mises 
stress inside heterogeneous cells at two different fluid velocities. The 
shell Young’s modulus is kept fixed at Ec = 1 kPa in (i) and (iii) while 
in (ii) and (iv) the nucleus Young’s modulus is fixed at 20  kPa. At 
high flow velocity the volume averaged Young’s modulus model only 
yields accurate results for small � . Generally the stress inside the cell 
is dominated by the cytoskeleton stiffness. c A slight variation of the 
dynamic of the migration inside the channel occurs for large � . How-
ever the time needed for the cell to reach the center remains similar
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fluid stresses. At high fluid velocity (Fig. 7b-ii, iv) the 
deviation between heterogeneous cell and homogeneous 
equivalent becomes somewhat more pronounced, but still 
does not exceed 20%.

When the cell is placed off-center the gradient in shear 
rate causes it to migrate towards the center (See Fig. 1d). 
The speed of migration for both heterogeneous and homo-
geneous cells is shown in Fig. 7c. For � = 2 the migration 
paths are identical. For higher � slight differences in the 
migration paths become visible, however the duration until 
the middle of the channel is reached remains very similar.

Because differences between the homogeneous and het-
erogeneous setup only manifest for the average cell stress 
in case of a large stiffness difference between nucleus and 
cytoskeleton and a cell flowing exactly centered through 
the channel, we conclude that our proposed homogeneous 
equivalent description is still overall valid in capillary flow.

4  Conclusion

In this work, we presented a systematic numerical demon-
stration that the mechanics of highly heterogeneous cells 
can be replaced by a simple homogeneous equivalent with 
a single effective elastic modulus. The effective modulus 
is obtained by simply taking the volume average over the 
different moduli characterizing the heterogeneous cell. We 
demonstrated this equivalence for three scenarios each cor-
responding to a commonly used experimental measurement 
technique: (i) AFM compression, (ii) a cell in shear flow and 
(iii) a cell flowing in a microchannel. The approach is valid 
for nucleated cells with different cytoskeleton/nucleus stiff-
ness ratios, cytoskeleton/nucleus size ratios, nucleus posi-
tions and even nucleus shapes. This underlines the robust-
ness of our findings.

Our results thus validate in hindsight the simplifying 
approaches taken in many previous experimental and com-
putational works, but also provide a solid basis on which 
future experimental data can be analyzed and physically reli-
able computer simulations can be constructed.

Appendix A Mooney–Rivlin strain energy 
computations

As described in Sect. 2.1.1 we use Neo-Hookean strain 
energy computations for the cells dynamics. The more 
sophisticated Mooney–Rivlin model in (Müller et al. 2021) 

uses two separate shear moduli �1 and �2 for computing the 
strain energy density of a tetrahedron:

Here I, J and K are invariants of the deformation tensor and 
�1,�2 and � relate to Young’s modulus and Poisson ratio 
like so:

We tested whether the effective Youngs modulus model 
for a homogeneous equivalent cell still works when using 
the Mooney–Rivlin model by deriving the equivalent shear 
modulus of both the nucleus and cytoskeleton: � = �1 + �2 . 
Figure 8 shows similarly good agreements compared to 
above between heterogeneous and homogeneous setups 
which further supports the validity of our model.

Appendix B Alternative method: varying 
Young’s/shear modulus of the cytoskeleton

So far we varied primarily the mechanical parameters of 
the nucleus to study the effect of heterogeneity. Our results 
however are independent on whether the nucleus or the 
cytoskeleton is varied. In Fig. 9 previous figures are repro-
duced, this time via changing the Young’s/shear modulus 

(A1)UMR =
�1

2
(I − 3) +

�2

2
(K − 3) +

�

2
(J − 1)2

(A2)�1 + �2 = � =
E

2(1 + �)
� =

E

3(1 − 2�)

Fig. 8  The force versus deformation behavior of heterogeneous cells 
using the Mooney–Rivlin model. The cell parts material constants 
are set fractions of the given shear modulus: �1 = 0.25�,�2 = 0.75� . 
The homogeneous equivalent cell approximation appears as good as 
when using the Neo-Hookean model (Fig. 2 of the manuscript)
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of the cytoskeleton. As one can see, the results are indis-
tinguishable from Figs. 2 and 5 respectively.
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