
Noncontinuous Froude Number Scaling for the Closure Depth of a Cylindrical Cavity

Stephan Gekle, Arjan van der Bos, Raymond Bergmann, Devaraj van der Meer, and Detlef Lohse
Physics of Fluids Group and J. M. Burgers Centre for Fluid Dynamics, University of Twente,

P.O. Box 217, 7500AE Enschede, The Netherlands
(Received 18 December 2006; revised manuscript received 20 July 2007; published 27 February 2008)

A long, smooth cylinder is dragged through a water surface to create a cavity with an initially
cylindrical shape. This surface void then collapses due to the hydrostatic pressure, leading to a rapid and
axisymmetric pinch-off in a single point. Surprisingly, the depth at which this pinch-off takes place does
not follow the expected Froude1=3 power law. Instead, it displays two distinct scaling regimes separated by
discrete jumps, both in experiment and in numerical simulations (employing a boundary integral code).
We quantitatively explain the above behavior as a capillary wave effect. These waves are created when the
top of the cylinder passes the water surface. Our work thus gives further evidence for the nonuniversality
of the void collapse.
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Many phenomena in fluid dynamics are known to be
self-similar [1] and universal, allowing physicists to de-
scribe their final outcome without precise knowledge of the
initial conditions. Prime examples for such universality are
the breakup of an elongated fluid filament inside another
viscous fluid [2] and the pinch-off of a liquid droplet in air
[3–5]. For the inverse problem [6–10], i.e., when an air
bubble pinches off inside a liquid, the dynamics retains a
memory of its creation until the very end, indicating non-
universality. As an example for such a breakup, we exam-
ine the air-filled cavity created when a solid object is
rapidly submerged through a water surface. The walls of
the cavity subsequently collapse due to hydrostatic pres-
sure from the liquid bulk. When the colliding walls meet, a
violent jet shoots up into the air. Regardless of the non-
universality of the pinch-off [7], the location at which it
takes place has been reported (experimentally and theo-
retically) to scale in a continuous fashion with the object
velocity for such different systems as spheres on preflui-
dized sand [11], solid disks [12], spheres and cylinders [13]
on water, and even water columns on water [14]. Our
experimental and numerical evidence shows the lower
limit where this universal scaling is broken through the
interference of a second phenomenon unrelated to hydro-
static pressure. Surface waves created as the object passes
the water surface significantly alter the pinch-off location
in a noncontinuous manner. Similar effects for the break-
down of a universal behavior due to wave interaction have
been observed in, e.g., magnetohydrodynamics [15] and
turbulence [16].

In our experiment we drag a cylinder with radius R0 "
20 mm and length l " 147 mm through the surface of a
large water tank using a linear motor connected to the
cylinder bottom by a rod. We prescribe a constant cylinder
velocity V between 0.5 and 2:5 m=s. With the kinematic
viscosity ! the global Reynolds number Re " R0V=! is of
the order of 104, while the local Reynolds number Re "
R _R=! defined with the cavity radius R for the point of

minimum radius lies between 102 and 105, demonstrating
that inertia dominates viscous effects. Further, with the
surface tension coefficient ", #gR0 # "=R0; i.e., gravity
dominates over surface tension. The relevant dimension-
less parameter is thus the Froude number Fr " V2=$R0g%
with g " 9:81 m=s2, which in our experiment ranges be-
tween 1.2 and 32.

The shape of the axisymmetric cavity is imaged with a
high-speed camera at up to 10; 000 frames= sec , with the
vertical coordinate z pointing upwards along the cylinder
axis and r being the radial coordinate. Figure 1 shows a
typical sequence of the cavity dynamics. We choose the
starting position of the lower edge of the cylinder slightly
below the water surface to suppress the splash. From there
it is pulled downwards with high acceleration such that it
has reached its prescribed speed before the top passes the
water surface at t " 0. The submerging cylinder creates an
air-filled cavity with an initially cylindrical shape whose
side walls immediately start to collapse 1(a). Magnification
of the cavity walls as in 1(b) shows that they are not smooth
surfaces, but exhibit pronounced ripples. Note that these
ripples are of different origin than those observed after
pinch-off [17].

From the high-speed video images we extract the closure
depth of the cavity zc for cylinder velocities up to 2:5 m=s.
Plotting the closure depth over the Froude number as in
Fig. 2, we find two asymptotic regimes. The regime for low
Froude numbers obeys a scaling behavior zc=R0 & Fr$

with an exponent $ " $1 ' 0:1. This is in contrast to
earlier experiments [13], which showed a single continu-
ous scaling behavior with $ ' 1

3 , for which a theoretical
explanation in terms of inertia and gravity could be given
[11,13,14]. At the end of the low Froude regime, the data
abruptly depart to an intermediate regime without any
experimentally clearly discernible structure. After a pro-
nounced jump we find a third regime, which due to experi-
mental limitations can be observed only between
Fr " 22:4 and 35.5. While this is too short to ascribe a
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definite power law behavior, we can nevertheless conclude
that this last regime—in contrast to the preceding two
regimes—is not disagreeing with the theoretically pre-
dicted value of a scaling exponent of 1=3.

To understand the underlying mechanism leading to this
discontinuous behavior, we conducted boundary integral
simulations. Our numerical results match very well with
the high-speed videos without the use of any adjustable
parameter; see Fig. 1. The agreement of the wave pattern in
Fig. 1(b) can be even further improved when at the expense
of introducing a free parameter we allow for a deviation
from the precise 90( angle between the cylinder wall and
the free surface, accounting for the free surface being
dragged down and resulting in a slightly curved profile
close to the cylinder wall.

The numerical simulations allow us to study the ripples
in Fig. 1(b) in great detail. As the cylinder top passes the
water surface, the rectangular corner between the cylinder
wall and the water surface is no longer held in place by the
solid boundary of the cylinder. The newly created free
surface thus possesses a corner with very high (initially
infinite) curvature. Surface tension immediately tries to
flatten this surface by pulling the corner diagonally in-
wards into the fluid bulk. This results in a shock similar
to throwing a stone onto a lake, which consequently leads
to the formation of capillary waves traveling out- and
downward on the free surface. The downward waves can
be observed in Fig. 1(b). The shock creates a wave packet
containing waves of different frequencies. Each of these
waves spreads with a velocity c " !=k given by the dis-
persion relation !2 " $"=#%k3, where we assume plane
capillary waves (since kR# 1 during all but the very rapid
collapse at the end of the cavity evolution) and ! desig-
nates the angular frequency, k the wave vector, and # the
density of the liquid.

Using stationary phase approximation, we calculate the
dominant wave vector k) at a given distance x from the
source at time t: k) " $23 x=t%2#=". Our simulations allow
for an accurate estimate of the dominant wavelength %
from the shape of the surface; cf. Fig. 3(a). Comparison
with the above equation as in the inset of Fig. 3(a) confirms
that the observed ripples on the surface are indeed capillary
waves originating from the corner point as the cylinder top
passes the water surface. The damping for capillary waves
can be estimated as tdamp & 1=$!k2% obtaining, with a
wavelength of the order of 6 mm [see Fig. 1(b)], a damping
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FIG. 2 (color online). The experimental closure depth as a
function of the Froude number. The asymptotic regime for low
Froude numbers scales with $1 ' 0:1 (red solid line). Only in
the limit of high Froude numbers does the data not contradict an
exponent of 1

3 (blue dashed line). For the intermediate regime the
experiments show no systematic behavior.
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FIG. 1 (color online). (a)–(c) Snapshots of the cavity for Fr " 11:5. The area designated by the yellow rectangle in (a) is magnified
in (b) illustrating the rippled surface of the cavity walls. Red lines show the numerical simulation. In (a) and (b) video frames are
connected to simulation time by matching the cylinder position; for (c) it was more convenient to match the cavity closure times
instead. (d)–(g) The transition from one closing ripple to the other. At Fr " 18:8, (d) and (e), the upper of the two marked ripples
closes. At Fr " 20:6, (f) and (g), it is the lower of the two ripples that pinches.
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time of 900 ms, which is well beyond the closure time of
the cavity.

The closing of the cavity is driven by hydrostatic pres-
sure acting on every point of the free surface accelerating it
inward as soon as the cylinder has passed. This accelerat-
ing force increases with the depth. Thus, points near the top
surface start moving early with a small acceleration, while
deeper points start with increasing delay, but higher accel-
eration [11,13]. On a rippled surface this process favors the
wave crests over the other points. The resulting closure
depth will thus be determined by a combination of (i) hy-
drostatic pressure induced by gravity and (ii) capillary
waves created by surface tension.

The numerically obtained closure depth shown in Fig. 4
reasonably reproduces the experimental results. The final
regime scales with $2 ' 0:43. Considering that the theory
from [11,13,14] assumes a purely radial flow pattern and an
initially perfectly cylindrical cavity shape, the prediction
of 1

3 is reasonably close to our observed exponent. Our
simulations even make the identification of an intermediate
regime possible, which due to its small range in Froude
numbers cannot be clearly observed in experiments. The
shift between numerical and experimental data on the
Froude axis can be attributed to the fragility of the mea-
surement process in and around the intermediate regime as
well as to small contaminations that lower the surface
tension of the water.

The insets in Fig. 4 elucidate precisely how the capillary
waves lead to the discontinuous jumps between the differ-
ent regimes of the closure depth: For Froude numbers near
the transition point three different local minima of the
radius come very close to meeting their counterpart on
the opposite side. In the first regime the uppermost of the
three minima closes first and thus determines the closure
depth, while in the second regime the one located in the
middle is the fastest to reach the central axis. Finally, when
the lowest minimum closes before the other two, the third
regime is attained. Figures 1(d)–1(g) show experimental
photographs of this effect at the transition point from the
intermediate to the high Froude regime.

Since the behavior of the capillary waves is determined
by surface tension, one expects that modifications of the
surface tension coefficient " should significantly alter the
closure depth in the first and any intermediate regimes. For
the last regime capillary waves are irrelevant and the scal-
ing behavior of the closure depth can be derived indepen-
dent of surface tension [11,13,14]. We have performed
simulations with a tenfold increase and decrease of " as
compared to the natural value of 72:8 mN=m for water as
well as for a hypothetical liquid without any surface ten-
sion (" " 0). As Fig. 5 demonstrates, the Froude number
ranges for the three regimes are found to depend indeed
strongly on the value of the surface tension coefficient. The
length of the first regime significantly enlarges for a higher
surface tension coefficient. As expected, the last regime is
almost uninfluenced by changes in surface tension. For low
surface tension merely the two asymptotic regimes exist
and the intermediate regime is not observed anymore. The
limiting case completely without surface tension possesses
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FIG. 4 (color online). Comparison of the experimental closure
depth (black crosses) with the numerical data (blue diamonds).
The insets illustrate the shape of the cavity at pinch-off for one
representative of each regime (axes are the same for all insets).
The regimes are determined by which local minimum first meets
its counterpart on the central axis.
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FIG. 3 (color online). (a) Capillary waves for V " 3 m=s
(Fr " 45:9) as obtained from the simulation. Wave crests are
marked by red circles and allow an estimate of the dominant
wavelength % " 2&=k at a given position. The inset compares
these wavelengths for the downward (blue circles) and outward
(black crosses) waves to the theoretically expected behavior for
capillary waves (red line). (b) The natural cavity dynamics (red
solid) as a superposition of two hypothetical settings: without
surface tension (black dashed) and without gravity (blue dotted)
for V " 1 m=s (Fr " 5:1).
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only one regime in reasonable agreement with the theo-
retical Fr1=3 scaling.

With x " zc and k) & 1=zc we estimate the relevant time
scale for the capillary waves as tw &

!!!!!!!!!!
#="

p
z3=2
c while the

time scale for cavity closure is tc & zc=V. The onset of the
high Froude number regime is now readily found by equat-
ing the ratio tw=tc to a constant of order 1. Introducing the
Bond number Bo " gR2

0#=" and making use of the theo-
retically expected scaling zc=R0 & Fr1=3, this yields
Frtrans & Bo!3=4, which is in good agreement with our
numerical observations as shown in the inset of Fig. 5.

The cavity dynamics completely without surface tension
and thus deprived of all capillary waves is illustrated by the
black dashed lines in Fig. 3(b). The blue dotted lines depict
the evolution of a free surface starting with a (nearly)
rectangular corner without gravity, allowing us to study
the formation of capillary waves in an isolated setting. The
cavity dynamics under realistic conditions (g " 9:81 m=s2

and " " 72:8 mN=m) is shown in red and can clearly be
identified as a superposition of the above-mentioned limit-
ing cases. In the first instants, the real dynamics is almost
identical to the one without gravity with its main feature
being the capillary waves. Later, hydrostatic pressure be-
comes more important until finally the cavity approaches

the shape of the pure gravity simulation with the capillary
waves superposed on the cavity walls.

In conclusion, we have shown that capillary waves
created when a submerging object passes the water surface
have a strong and lasting influence on the dynamics of the
cavity. This influence remains observable until the very end
of the cavity collapse. manifesting itself in clearly distinct
regimes of the closure depth as a function of the submerg-
ing velocity. We have thus illustrated the lower limit to the
continuous inertial-gravitational scaling regime observed
in [11–14]. Since capillary waves are an unavoidable con-
sequence of disturbances on a water surface, we expect that
the effects elaborated in this Letter will be of relevance to a
wide range of related phenomena.
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FIG. 5 (color online). The numerical closure depth as a func-
tion of the Froude number and corresponding scaling exponents
for different surface tension coefficients: "1 " 728 mN=m
(black circles), "2 " 72:8 mN=m (blue diamonds), "3 "
7:28 mN=m (red crosses), and "4 " 0 (magenta squares). For
" " 0 no data at low Froude numbers are shown, since axial
velocity components during the collapse prohibit the application
of the Fr1=3 theory. The inset shows the onset of the high Froude
number regime as a function of the Bond number with the red
line depicting the expected scaling law Frtrans & Bo!3=4.
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