
High-Speed Jet Formation after Solid Object Impact
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A circular disc hitting a water surface creates an impact crater which after collapse leads to a vigorous

jet. Upon impact an axisymmetric air cavity forms and eventually pinches off in a single point halfway

down the cavity. Two fast sharp-pointed jets are observed shooting up- and downwards from the closure

location, which by then has turned into a stagnation point surrounded by a locally hyperbolic flow pattern.

This flow, however, is not the mechanism feeding the jets. Using high-speed imaging and numerical

simulations we show that jetting is fed by the local flow around the base of the jet, which is forced by the

colliding cavity walls. We show how the well-known theory of a collapsing void (using a line of sinks on

the symmetry axis) can be continued beyond pinch-off to obtain a new and quantitative model for jet

formation which agrees well with numerical and experimental data.
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The most prominent phenomenon when a solid object
hits a water surface is the high-speed jet shooting upwards
into the air. The basic sequence of events leading to this jet
has been studied since Worthington over a century ago:
After impact, the intruder creates an air-filled cavity in the
liquid which due to hydrostatic pressure immediately starts
to collapse, eventually leading to the pinch-off of a large
bubble. Two very thin jets are ejected up-, respectively,
downwards from the pinch-off point. This finite-time sin-
gularity has been intensively studied in recent time [1–5].
Such singularities have been shown to lead to a hyperbolic
flow pattern after collapse and thus to the formation of
liquid jets [6–9].

As we show in the present work, however, the radial
energy focusing towards the singular pinch-off point alone
is not sufficient to explain the extreme thinness of jets
observed after the impact of a solid object. Instead, this
jet formation is shown to depend crucially on the kinetic
energy contained in the entire collapsing wall of the cavity
even far above the pinch-off singularity.

This is in contrast to jets observed in many other situ-
ations where narrow confining cavity walls are not present,
e.g., for bubbles bursting on a free surface or near a solid
wall [9–11], wave focusing [12,13], or jets induced by
pressure waves [14]. In addition, surface tension in our
case turns out to be irrelevant in contrast to capillary-driven
scenarios as suggested for Faraday waves [7,8]. In all these
cases jetting seems thus to be accomplished by a mecha-
nism different from the one in this Letter. In the case of
drop impact [15,16] or gas injection through a needle
[3,17], however, the formation of a cavity and its subse-
quent inertial collapse can sometimes be observed and the
present mechanism might be of relevance.

Our experimental setup consists of a circular disc with
radius R0 that is pulled through a water surface with

velocity V0 as described in [4]. The velocity V0 is kept
constant throughout the whole process. Global and local
Reynolds and Weber numbers are fairly large as shown in
[4] and therefore the only relevant control parameter is the
Froude number, Fr ¼ V2

0=R0g with gravity g, which we
choose to equal 5.1 (for R0 ¼ 2 cm and V0 ¼ 1 m=s).
We treat the problem as inviscid and irrotational. This

assumption is justified by the large Reynolds numbers [18]
together with the very short time scale of jet formation and
is confirmed by detailed particle image velocimetry mea-
surements [19]. We thus make use of potential flow em-
ploying an axisymmetric boundary-integral technique
which explicitly tracks the free surface. The topology
change at pinch-off is implemented as follows: When the
radial position of the node closest to the axis becomes
smaller than the local node distance, the two neighboring
nodes are shifted to the axis, conserving their vertical
position and their potential. Continuing the simulation,
these nodes eventually form the tip of the top and bottom
jets. These numerical simulations have shown excellent
agreement with experiments for different impact geome-
tries [4,20] and we verified carefully that our results are
independent of numerical parameters such as node density
and time stepping. The influence of air is neglected.
Figure 1 shows the pinch-off of the impact cavity and the

subsequent formation of two thin jets. We use polar coor-
dinates with z ¼ 0 at the pinch-off height and t ¼ 0 at the
pinch-off moment. Velocity, length, and time scales are
normalized by V0, R0, and T0 ¼ R0=V0, respectively. As
can be clearly appreciated from Fig. 1 surface tension is
completely irrelevant for the present mechanism which is
markedly different from the jetting mechanism suggested
for Faraday waves [7,8].
We set out to elucidate the precise mechanism which

turns the horizontally collapsing cavity of Fig. 1(a) into the
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thin vertical jets of Figs. 1(b) and 1(c). For this we focus on
the dynamics of the upward jet base defined as the local
surface minimum illustrated in Fig. 2. It is remarkable how
the geometric confinement of the narrow cavity forces the
jet to move upwards very fast while the widening of its
base is restricted by the collapsing walls. We find that jet
formation occurs on an extremely short time scale: the jet
grows above the initial quiescent surface in less than 1% of
the total time after impact.

These high speeds, however, are not due to a hyperbolic
flow around the original pinch-off point as one could have
expected based on suggested jetting mechanisms in other
situations [6–9]. Figure 3 demonstrates how the fluid here
is not accelerated upwards continuously from the pinch-off
singularity but instead acquires its large vertical momen-
tum in a small zone located around the jet base: Since each
horizontal cross section of the axisymmetric cavity wall
will keep flowing radially inwards even after pinch-off,
eventually it must collide on the axis in a similar way as the
original pinch-off. This creates an upward and downward
acceleration, of which the upward acceleration feeds the
jet. The downward (negative) acceleration below the jet
base can clearly be observed in Fig. 3. It is thus essential to
consider not only the singularity itself but also the con-
tinuous collapse of the entire cavity wall in any kind of
theoretical modeling.

Inspired by the above observations we derive an analyti-
cal model for the jet formation: First, the flow field of the
collapsing cavity before pinch-off will be described by a
line of sinks along the axis of symmetry as in, e.g., [2,5,21].
The strength of these sinks will be determined from the
simulation at pinch-off and forms the only input quantity
for our model. Next, we will show how this picture natu-
rally leads to a good description of the bulk flow after
pinch-off. The line of sinks acquires a ‘‘hole’’ between the
two jets and an additional point sink emerges near the jet

bases. Finally, we will obtain two differential equations for
the widening and upward motion of the jet base which are
the two most relevant processes for jet formation.
Secondary processes as jet breakup and the precise dynam-
ics of the jet tip are not considered here.
As a starting point, Green’s identity allows us to write

the potential at any point r in the liquid bulk as an integral
of sources and dipoles over the free surface:
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FIG. 2 (color online). The inset illustrates the position of the
jet base (red diamond) at different times. In contrast to other
situations the vertical motion is much faster than the widening.
The main figure shows the upwards motion zbðtÞ of the jet base
predicted by the analytical model (black line) which compares
very favorably with simulation (red crosses) and experiment
(blue diamonds). (The slightly slower motion in the experiment
can be attributed to an imperfect axisymmetry reducing the
radial focusing effect and thus slowing down the jet motion.)
The agreement between model, experiment, and numerics is
equally good for the base widening rbðtÞ. The motion of zb is
reminiscent to gas bubbles injected into water [3].
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FIG. 3 (color online). The vertical material acceleration az ¼
Dvz=Dt at t=T0 ¼ 0:028 is confined to a small region around the
jet base. The pinch-off location at (0,0) lies too deep to influence
the jetting process beyond the first instants after pinch-off.
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FIG. 1 (color online). The free surface shape (black solid line)
for simulations with surface tension (# ¼ 72:8 mN=m) and
without surface tension (red or gray dashed line) and the disc
position (blue or dark gray) from the simulation at pinch-off (a),
at an intermediate time with the growing up- and downward jets
(b) and at the instant when the downward jet hits the disc (c). As
the free surface shapes lie almost exactly on top of each other we
conclude that surface tension has no influence on the dynamics.
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with the integration taken over the free surface S as illus-
trated in Figs. 4(a) and 4(b). Since the dipole term decays
quickly as 1=jr! r0j2, the source term (which decays only
as 1=jr! r0j) will be the only relevant contribution to the
integral if the observation point is chosen sufficiently far
from the free surface. As the cavity close to pinch-off
becomes slender, @"=@n & _R for a point R on the free
surface. Since the surface has no overhangs we write dS ¼
2!Rdz. Approximating the radial distance as r! r0 & r
turns Eq. (1) into [2,5]:

2"ðr; zÞ ¼
Z qaxisðz0; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðz! z0Þ2
p dz0; (2)

with a time- and height-dependent line distribution of sinks
qaxisðz; tÞ along the axis of symmetry. Keeping in mind the
extremely short time scale of jet formation as compared to
the cavity collapse, we can assume the sink strength to
remain constant in time from the moment of pinch-off tc
onwards, qcðzÞ ¼ qaxisðz; tcÞ.

During jet formation we divide the free surface into two
regions separated by the jet base. The outer region contains
the collapsing cavity until the jet base, while the inner
region extends from the base inwards to the axis of sym-
metry as sketched in Fig. 4(b). The principal fluid motion
in the outer region remains identical to the collapsing
cavity before pinch-off. High up in the jet, the motion
will be vertically upwards with negligible radial velocity
and thus will not contribute to the integral Eq. (2). As a free
surface fluid element travels through the jet base and
further up into the jet, it transitions from one flow regime
to the other by decelerating its initial radial motion and
turning it into vertical momentum. Thereby, its contribu-
tion to the integral (2) decays to a negligible amount. This
decay of the sink strength cannot happen instantaneously,
which leads to an accumulation (see Fig. 4) of sinks around
the jet base and a corresponding inward motion in that area.
The length over which the sinks decay and accumulate
must be proportional to the radius of the jet base which is
the only relevant local length scale, Crb, with C a constant
of order one. This accumulation of sinks makes the dy-
namics qualitatively different from the collapsing cavity
before pinch-off as in [2,5,21] and is crucial for the emer-
gence of the high-speed jet. Note that our model is con-
structed only for the bulk flow outside the actual jet. The
sinks on the axis thus always remain outside of the liquid
domain which they aim to describe.

From an observation point at r ( rb, the contribution of
the sinks accumulating around the base is seen as a point
sink of strength CrbqcðzbÞ since qcðzÞ & qcðzbÞ along the
length Crb. The point sink is located some distance above
the base which is again proportional to the local length
scale, i.e., zsink ¼ zb þ Csinkrb introducing a second con-
stant Csink of order unity.

Similarly, the most relevant contribution of the outer
region will be that part of the integral closest to the
observation point r. At an altitude similar to or lower

than the base, this is the region close to the base where
again qcðzÞ & qcðzbÞ. To allow analytical treatment of the
integral from Eq. (2), we can thus at any given time assume
a sink strength being constant in space along the entire axis
above the base. Through the motion of the base this sink
strength depends implicitly on time qbðtÞ ¼ qcðzbðtÞÞ.
Combining the approximations of the preceding para-

graphs, we are now able to give an analytical expression
derived from Eq. (2) for the potential at any point (r, z) as a
function of the base position rb and zb:
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point sink

: (3)

The initial sink distribution is obtained from the numerics
by calculating qcðzÞ ¼ !R _R along the surface just once at
pinch-off. It forms the only input quantity required by our
jetting model. Note that, as we are dealing with the up-
wards jet, the point sink for the downward jet is far away
and can be neglected.
In order to derive the desired ODEs for rbðtÞ and zbðtÞwe

apply the Bernoulli equation with zero pressure @"=@tþ
jr"j2=2 ¼ 0 on the free surface, neglecting small hydro-
static contributions. We then employ Eq. (3) to obtain the
first differential equation involving _rbðtÞ and _zbðtÞ. The
second ODE results from the kinematic boundary condi-
tion at the jet base which, since the base is a local mini-
mum, reads @"=@z ¼ _zb. This leads to a closed system of
two ODEs. The calculations are presented in EPAPS_2
[22]. With C ¼ 4:55 and Csink ¼ 0:63 the agreement with

FIG. 4 (color online). (a) Sketch of the collapsing cavity being
described by a distribution of sinks (orange or dark gray arrows;
lengths are not representative of sink strength) on its free surface.
(b) During jet formation the cavity collapse in the outer region
remains unchanged (orange or dark gray arrows) while around
the jet base sinks accumulate (green or light gray arrows). This
can be approximated as a line of sinks along the axis of
symmetry plus a point sink (green or light gray dot). In the
central region around the pinch-off point sinks are completely
absent. For a detailed description, see main text.
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simulations and experiment is remarkable as demonstrated
by Fig. 2. We stress that the model requires as its only
ingredient the sink strength distribution at pinch-off.

Finally, it is important to understand which region of the
liquid bulk at pinch-off will eventually become ejected into
the jet. This knowledge can be obtained from the numerical
simulations by injecting a line of particles at the base of the
jet, cf. Fig. 5(a). Since the flow field is known for all times
previous to particle injection, the tracers can be followed
backwards to their origin at t ¼ 0. The line of tracers
injected at the final instant will yield the outer boundary
of the fluid layer that, together with the free surface,
delimitates the fluid volume from which the jet origi-
nates. While the radial extent of the fluid layer depicted
in Fig. 5(c) is of the order of the disc radius, its maximum
thickness is only about 0:01R0. Thus far, a similar surface
layer has only been observed when jetting is directly
caused by surface waves [12]. In the present case, the
thinness of the layer is even more remarkable as it does
not arise from a surface phenomenon but from the collaps-
ing motion of the entire bulk liquid.

In conclusion, we have studied in detail the mechanism
responsible for the formation of high-speed Worthington
jets after the impact of solid objects on a liquid surface. We
showed that the liquid forming the jet originates from a
thin layer straddling the surface of the impact cavity. Our
main finding, nevertheless, is the vital importance of the
radial energy focusing along the entire wall of this cavity.
In contrast to other situations [6–9], the hyperbolic flow
around the singular pinch-off point turned out to be not the
relevant mechanism behind jet formation. Instead, our case
seems more reminiscent of the violent jets observed during
the explosion of lined cavities [23]. We proposed an ana-
lytical model which is in very good quantitative agreement
with experimental data and numerical simulations. The
only ingredients to the model are two constants of order
one and a sink distribution qcðzÞ describing the collapsing
cavity at pinch-off.

We expect that the present mechanism is also respon-
sible for the very thin jets ejected after the impact of water
droplets on a liquid pool [15] in a parameter range where a
small cylindrical cavity at the bottom of the crater collap-
ses in a very similar fashion as the impact cavity described
in this work. In the future, our model of jet formation can
serve as the base for predicting the shape and the velocity
of the jet itself.
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FIG. 5 (color online). A line of tracer particles is injected at
the base of the jet at tinj=T0 ¼ 0:08 (a). After advecting them

backwards in time to the moment of pinch-off they form the
border of a thin surface layer containing the liquid that even-
tually ends up in the jet (b). A corresponding movie is included
as EPAPS_1 [22]. (c) The thickness of the layer that has gone
into the jet at three different times.
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