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Dielectric response of the water hydration layer around spherical solutes
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We calculate the local dielectric function ε(r) inside the hydration layer around a spherical solute (i) from
molecular dynamics simulations including explicit solutes and (ii) theoretically using the nonlocal dielectric
function of bulk water which includes the radial electric field, but not the explicit solute. The observed agreement
between the two concepts shows that while ε(r) is strongly different from bulk, this difference is not due to
restructuring of the hydrogen bond network but is mostly a consequence of the field geometry. The dielectric
response differs for anions and cations, yielding a natural explanation for the well-known charge asymmetry of
ionic solvation in agreement with experimental data.
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The dielectric constant of liquid solvents such as water
determines the local screening of an electric field due to solvent
molecules. It is therefore a key parameter to describe the
interaction between partially charged protein moieties [1–6],
the solvation and distribution of salt ions [7–12], ion-specific
(Hofmeister) effects [13,14], electrokinetic processes [15,16],
and even quantum effects such as incoherent energy transfer
in organic semiconductors [17]. As a consequence, it features
prominently in the Bjerrum length, in the Debye length, as
well as in the Förster radius, which represent the length
scales commonly used to describe the above processes [18].
The dielectric constant furthermore is an essential ingredient
in modern simulation techniques such as implicit solvent
molecular dynamics [19–21], Monte Carlo schemes [22,23],
and quantum simulations [24].

This importance in very different fields explains the recent
upsurge in attempts to obtain quantitative data for the spatially
resolved local dielectric constant ε(r) on the nanometer scale
either from dielectric spectroscopy experiments [25–34] or
from computer simulations [35–47]. It is generally found that
the dielectric properties in the close vicinity of interfaces are
fundamentally different than in bulk.

In some contrast to these local attempts stand a number of
approaches to calculate solvation energies and particle-particle
interaction forces from pure bulk water quantities based on
the concept of a wave-vector-dependent, nonlocal dielectric
constant ε(k) [48–55]. This quantity has been obtained from
molecular dynamics (MD) simulations in excellent agreement
with experiments [56,57]. Its first applications, however, date
back much earlier and were based on ad hoc assumptions on
the shape of ε(k) [58].

Here we unify both approaches by demonstrating that
the radial component of the spatially resolved local ε(r)
surrounding spherical solutes such as ions or small protein side
groups in water, as calculated from explicit MD simulations
using a newly developed formalism, is in good agreement with
that obtained from the nonlocal dielectric constant ε(k) in bulk
water. Our work demonstrates that, while the local dielectric
response in the hydration layer of the central charged object is
severely different from bulk, this difference is not mainly due to
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a restructuring of the local hydrogen bond network but instead
is a manifestation of molecular correlations existing already
in bulk water. The obtained dielectric profiles furthermore
furnish an explicit explanation for the well-known asymmetry
in the solvation energy of equally sized cations and anions and
compare favorably with experimental data.

I. METHODS

A. Simulations

We conduct classical MD simulations of 6017 extended
simple point charge (SPC/E) water molecules arranged in
a spherical droplet of radius Rdrop = 3.8 nm enclosed by
wall particles with Lennard-Jones interaction parameters
σeO = 0.25 nm and ϵeO = 0.62 kJ/mol (see Fig. 1). Since the
SPC/E force field is nonpolarizable, effects due to electronic
polarization are not explicitly accounted for in our simulations.
The solute is fixed in the center of the sphere, leading to
a completely radially symmetric system. Note that in the
more common setup of an ion in a cubic simulation box the
radial symmetry is broken, rendering the derivation of a linear
response theory unnecessarily complicated. We have checked
that our results are independent of the droplet size (see Fig.
S1 of the Supplemental Material (SM) [59]), thus faithfully
reproducing the situation of an ion solvated in bulk water.
Simulations are run using GROMACS [60] together with the
force fields of [61] for the ions (see Table I). For visualization
we use the VMD package [62].

Table II lists the simulation times for the calculations with
the different solutes. For the van der Waals potential we use
a cutoff radius of 1 nm (switched after 0.9 nm). The droplet
is centered in a cubic cell with an edge length of 12 nm, i.e.,
much larger than the drop radius. We simulate our systems as
NV T ensemble with a sampling rate of 0.2 ps. To keep the
temperature at 300 K we use a Nosé-Hoover thermostat.

For the electrostatics, we use the particle mesh Ewald
summation (PME) [63] with the real-space Coulomb interac-
tions truncated after 1.5 nm and switched at 1.45 nm. In each
direction 80 k-vectors are used. We note that by symmetry
the radial dipole moment vanishes identically at every instant
when integrating over the entire simulation box. We thus
expect no effects due to interaction between the different
periodic images when using Ewald summation. To verify
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FIG. 1. (Color online) Cut through the simulated system: the
sphere in the center of the droplet is the solute; the black spheres
are the wall particles.

this expectation explicitly we conduct a simulation without
periodic images where electrostatic (and Lennard-Jones)
interactions are calculated with a cutoff larger than the drop
diameter. All the interactions within our finite-sized system
are thus fully and explicitly included in the simulation without
any periodic images. Figure S2 (in the SM) demonstrates that
this approach leads to the same results, thus validating our use
of Ewald summation in the main text. The high computational
cost of this approach, however, precludes its use for large-scale
production runs.

The nonlocal response function was extracted from bulk
water simulations in a cubic box with an edge length of 10 nm
containing 33 226 water molecules and a simulation time of
32 ns. The cutoff for the Coulomb interactions was 1.1 nm with
a switch radius of 0.9 nm. The other parameters were the same
as for the simulation with explicit ions.

B. Linear response

For a general system the local dielectric permittivity ε(r)
is a tensor of rank 2. Due to the spherical symmetry of our
system this tensor becomes diagonal with two components for
radial and tangential fields. Here we concentrate on the radial
component εr (r) depending on the distance r from the solute.

TABLE I. Ion-water oxygen force field parameters from Ref. [61]
as used in this work.

Ion σiO (nm) ϵiO (kJ/mol)

Na+ 0.2876 0.5216
Cs+ 0.333 0.5
Cl− 0.3785 0.5216
I− 0.425 0.32

TABLE II. Simulation time of the different systems.

Particle type Time (ns)

Model solute (σiO = 0.4 nm, ϵiO = 0.65 kJ/mol) 820
Model solute (σiO = 0.31 nm, ϵiO = 0.65 kJmol) 145
Model solute (σiO = 0.4 nm, ϵiO = 1.54 kJ/mol) 145
Repulsive potential 145
Uncharged ions ( Na, Cs, Cl, I) 220
Charged ions (Na+, Cs+, Cl−, I−) 80

Applying the linear response formalism we obtain [for details
see Eq. (A10) of the Appendix]

ε−1
r (r) = 1 − 4πβr2

ε0
(⟨Pr (r)Mr⟩0 − ⟨Pr (r)⟩0⟨Mr⟩0), (1)

where ⟨·⟩0 denotes the ensemble average for the unperturbed
system, Pr (r) is the radial polarization, Rdrop is the radius of our
droplet, β = (kBT )−1 is the inverse thermal energy, ε0 is the
vacuum permittivity, and Mr is given by Mr =

∫ Rdrop

0 Pr (r ′)dr ′.
To calculate Pr (r) we go beyond the dipole approximation

which is often insufficient near interfaces [42,64]. Instead, we
use the internal charge density ρ int(r), thus taking all electric
moments into account as derived in Eq. (A18) of the Appendix.

C. Nonlocal dielectric constant

In the nonlocal treatment, the polarization of the dielectric
medium at position r depends on the electric field at any other
point r ′, which leads to an integral equation

P(r) = ε0

∫

V

(εnl(r,r ′) − 1)Eint(r ′)d r ′. (2)

In an isotropic, homogeneous bulk system the response
function εnl(r,r ′) in Eq. (2) depends only on the distance
|r − r ′| leading to a local expression in Fourier space as a
function of the wave vector k:

P(k) = ε0(εnl(k) − 1)E(k). (3)

The quantity εnl(k) can be calculated from MD simulations of
a bulk water box without solutes using the structure factor [56]

εnl(k) =
[

1 − 1
ε0kBT

⟨ρ(k)ρ(k)⟩
k2

]−1

, (4)

where ρ(k) is the Fourier transform of the water charge
distribution. To use the advantage of the fast Fourier transform
(FFT) these charges were distributed on a grid similar to the
PME method [65].

II. RESULTS AND DISCUSSION

We first consider the water density profile as function of
the distance r from the solute as shown in Fig. 2(a) for three
solute particles. The first is a Lennard-Jones sphere similar
to water’s oxygen (ϵiO = 0.65 kJ/mol), the second is a very
hydrophilic particle (1.54 kJ/mol), and the third possesses a
purely repulsive potential of the form V (r) = (σiO/r)12. For
all three solutes, σiO = 0.40 nm, corresponding to iodide. We
find an oscillatory density profile with a wavelength of λ ≈
0.28 nm.
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FIG. 2. (Color online) (a) The radial density profiles around three
different solutes ranging from purely repulsive (hydrophobic) to very
attractive (hydrophilic). (b) The inverse radial component of the
local dielectric permittivity shows strongly oscillatory behavior but
with a shorter wavelength than the density oscillations. Interestingly,
the oscillating permittivity is almost independent of the water-ion
interaction parameters. (c) Changing the Lennard-Jones interaction
distance (ion size) σiO leads to a shift but not to qualitative changes
in the dielectric profiles.

Using Eq. (1) we now calculate the radial component of the
spatially dependent dielectric tensor εr (r) as shown in Fig. 2(b)
for the same three particles. This distance-dependent εr (r) will
be relevant whenever two solutes come into close contact, e.g.,
side groups of the same protein, while bulk measurements on
salt solutions will report a spatial average. Oscillatory behavior
is found which for distances r > 1.1 nm decreases to the bulk
value ε−1

bulk = 1
71 of SPC/E water [66]. Yet, close to the solute

the oscillations in εr (r) possess a shorter wavelength and decay
much slower than the density oscillations. Our most important
finding in Fig. 2(b) is that the profile of the dielectric constant
is virtually independent of the depth of the potential, meaning
that any difference in the dielectric response is caused by
the size of the ion and not by specific ion-water interactions.
Dispersion interactions between ion and water thus do not play
a crucial role for the dielectric profiles.

We proceed to investigate the dependence of εr (r) on the
solute size by varying the Lennard-Jones interaction distance
σiO between 0.31 nm (corresponding roughly to Na+) and
0.40 nm (corresponding roughly to I−). The dielectric profiles
shown in Fig. 2(c) are shifted by the same difference of
0.09 nm, yet the amplitudes of the oscillations are hardly
influenced.
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FIG. 3. (Color online) The nonlocal dielectric response of bulk
water calculated from our MD simulations (gray dots) and the
corresponding empirical fit function (solid line). Due to the singularity
for k = 0 we add the bulk value [66] for SPC/E, εnl(k = 0) = 71,
manually [56].

A. Relation to nonlocal bulk dielectric

Motivated by our observation that the dielectric profile is
almost uninfluenced by the properties of the solute particle
(interaction potential and size), we suspect that the drastic
changes in the radial interfacial dielectric constant, as observed
in Figs. 2(b) and 2(c), may be related to the complex structure
of (bulk) water itself rather than to any specific restructuring
effects in the ionic solvation shell. In the following, we
therefore attempt to calculate the dielectric profiles from the
properties of pure bulk water.

Our starting point is the nonlocal wave-vector-dependent
dielectric function εnl(k) which we obtain from a simulation
of bulk water. As shown in Fig. 3 we observe two poles at
k1 ≈ 2.9 nm−1 and k2 ≈ 133 nm−1 in good agreement with
earlier MD calculations [56] for a different water model.

In order to relate the nonlocal bulk quantity εnl(k) to the
local dielectric constant εr (r) around the solute, we follow a
model developed by Basilevsky and Parsons [49,51]. Here, the
ion is considered a spherical cavity filled with vacuum and a
point charge at its center. The cavity is surrounded by bulk
water being a nonlocal dielectric medium described by εnl(k).
The electrostatic potential ((r) inside the solvent is then given
by three contributions [51]: the external potential of the solute,
the contribution of the surface charge, and the potential due
to the induced charge distribution in the dielectric medium.
Thus,

((r) = Q

4πε0r
+ a2σ

ε0r
+ ξ (r), (5)

where Q is the ion charge and the ion radius a is obtained
from Fig. 2(c) as the radial position where the ε−1

r (r) curves
first deviate from 1. The contribution of the induced charge
distribution can be calculated using

ξ (r) = 1
2ε0

∫ ∞

a

dr ′g(r ′)(r + r ′ − |r − r ′|) r
′

r
, (6)

where g(r) is given by the solution of the following Fredholm
integral equation as detailed in [51]:

g(r) +
∫ ∞

a

dr ′γ (r,r ′)g(r ′) = −
(

Q

4πa2
+ σ

)
γ (r,a). (7)
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The auxiliary function γ (r,r ′) involves only known quanti-
ties and is given as [51]

γ (r,r ′) = γL(r,r ′) + γp1(r,r ′) + γp2(r,r ′) (8)

with

γL(r,r ′) = −χL

2λ

r

r ′ {exp[−(r + r ′)/λ] − exp(−|r − r ′|/λ)}

γpi(r,r ′) = −χpiki

2
r

r ′ {sin[ki(r + r ′)] − sin(ki |r − r ′|)}.

The parameters χL, χpi , and λ can be obtained directly
from the nonlocal bulk permittivity, which we calculate using
Eq. (4). The result is shown in Fig. 3 as gray points. As the
subsequent calculations require the inverse Fourier transform
of εnl(k) to real space and the evaluation of spatial integrals,
we follow [51] and describe the form of εnl(k) as

εnl(k) = 1 + χL

1 + λ2k2
+ χp1

1 − (k/k1)2
− χp2

1 − (k/k2)2
. (9)

With this form, the integrals in the subsequent equations can be
performed analytically, thus avoiding the numerically unstable
integration over the poles in εnl(k). The required parameters
are obtained by first fixing the positions of the two poles k1
and k2 and the sum of the amplitudes

1 + χl + χp1 − χp2 = ϵ(k = 0) = 71. (10)

The wavelength λ and the amplitudes are chosen as

k1 = 2.9 nm−1, k2 = 133 nm−1,

λ = 0.025, χL = −1,696, (11)

χp1 = 72.13, χp2 = 0,377,

in order to obtain a satisfying agreement with our MD results
as shown by the red solid line in Fig. 3. These parameters
satisfy the stability criteria for the nonlocal permittivity [57]
εnl(k) > 1 or εnl(k) < 0. We emphasize that we use Eq. (9) as
a purely empirical form in order to obtain a numerically stable
form of the integral equation, Eq. (7). A physical interpretation
of Eq. (9) in terms of molecular geometry is beyond the scope
of the present paper.

We furthermore apply the regularization procedure for
the integral equation using the regularization parameter
α = 0.2 [51].

Finally, the surface charge σ is used here as an ad-
justable parameter which is chosen as σ = 0.65 e/ nm2 for
σiO = 0.31 nm and σ = 0.2 e/ nm2 for σiO = 0.4 nm. Both
values lie in between the limiting values for a simple local
model of bulk water σb = − Q

a2 (1 − 1
71 ) = 6 e/ nm2 and for

vacuum σvac = 0. For not too large values of the surface charge
σ ! 2 e/ nm2 the effect on the resulting dielectric profile is
negligible (see Fig. S4 of the SM).

We are now in a position to compute the local inverse
permittivity purely from bulk quantities. For this we use the
ratio of the internal to the external electric field:

ε−1
r (r) = Eint(r)

Eext(r)
= −∇((r)

Q/(4πε0r2)
. (12)

As demonstrated by Fig. 4, the results agree very well with
those obtained above from the system including the solute
explicitly. This demonstrates that the radial dielectric constant
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FIG. 4. (Color online) Comparison of the local dielectric con-
stant calculated from MD simulation including explicit ions from
Fig. 2(c) (solid lines) to the same quantity obtained solely from
bulk water properties using the nonlocal model of [51] with εnl(k)
from our bulk MD simulations (dashed lines). The good agreement
demonstrates that the response around a spherical solute is mostly
determined by bulk water properties and not so much caused by a
restructuring of water in the hydration layer.

of the solvation shell around simple ions can indeed be
determined to a large extent from water bulk properties and the
radial field geometry showing that the water structure in the hy-
dration layer is not significantly perturbed [67]. We speculate
that recent dielectric spectroscopy experiments [31,32,34,68–
70] might, at least in part, be explainable based on water’s
complex bulk properties in a similar manner if the approach
described in the present paper is extended to the frequency-
dependent dielectric function.

B. Charged solutes

We now consider the change in the dielectric profiles when
the spherical solute bears an electrical charge, as is the case for
salt ions or charged protein side groups. As shown in Fig. 5(a),
we find that the permittivity for negative charges (dashed lines)
is shifted to smaller radii although the Lennard-Jones diameter
σiO is held constant. For positive charges (solid lines), on the
other hand, mainly the amplitude of the dielectric profiles
changes but no significant shift is observed. This asymmetry
is related to the asymmetric character of the water molecule.
While the small partially positively charged hydrogen atom
can be attracted easily by a negatively charged solute, a
similarly close attraction of the oxygen atom by a positively
charged solute is hindered by the comparatively large size of
the oxygen. Indeed, for q = ±1 the shift between the first
mimima is around 0.1 nm which corresponds to the length of
the intramolecular OH bond in water.

This different behavior of hydrogen and oxygen in the
solvation shell around anions and cations was recognized
a long time ago as an explanation for the asymmetry in
solvation energy of (equally sized) anions and cations [72].
This phenomenon cannot be reproduced by the classical Born
theory which is charge-sign symmetric [73], which led to
the introduction of effective charge-dependent ion radii into
continuum theories [74–78]. The shift in the dielectric profiles
around differently charged particles observed in Fig. 5 points
in the same direction.

In order to obtain a more quantitative explanation, we
proceed to calculate the solvation energy based on our
dielectric profiles. Our central assumption is that the solvation
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FIG. 5. (Color online) (a) Radial dielectric profile around a
charged solute. The dielectric profiles around the positive charges
show almost no phase shift but a slightly larger amplitude compared to
q = 0. The profiles around the negative charges are shifted towards a
smaller radius. (b) The solvation energy for different partially charged
solutes (dots) calculated solely from dielectric profiles as those shown
in (a). The results show an asymmetry of the solvation energy of
108 kJ/mol in good agreement with full free-energy calculations [71].

energy is determined mainly by the change in electrostatic
energy as the dielectric solvent experiences the electric field
caused by the ion, i.e., neglecting contributions from a static
potential due to water orientation [71], or entropic effects such
as the creation of a cavity. In order to account for possible
nonlinear effects, we divide the process of charging into a
series of steps increasing the charge by small amounts in each
step. The change in the solvation energy -Gi→i+1

solv between
steps i and i + 1 is then calculated using the dielectric profile
εr,i around the solute with charge qi [see Eq. (A21) in the
Appendix]:

-Gi→i+1
solv = 1

8πε0

∫ Rdrop

0
(ε−1

r,i (r) − 1)
1
r2

dr

︸ ︷︷ ︸
:=L

(
q2

i+1 − q2
i

)
.

(13)
We checked that the drop radius Rdrop is sufficiently large
and does not influence the results (see Table S1 of the SM).
The thus calculated solvation energy for different charges of
our model ion with σiO = 0.4 nm is shown by the dots in
Fig. 5(b). The resulting charge asymmetry between q = ±1e
is 108 kJ/mol. This value, which is derived without any
adjustable parameters solely from dielectric profiles such
as those in Fig. 5(a), compares favorably with the charge
asymmetry of 83.7 kJ/mol determined from full free-energy
calculations for an ion composed of individual Lennard-Jones
spheres with a total radius 0.4 nm, which is similar (but not
identical) to our system [71].

As demonstrated by the solid line in Fig. 5(b) our data
are well described by a quadratic form -Gsolv = L±q2. The
coefficient L+ for positive ions is directly calculated from the

TABLE III. The calculated solvation energies -Gcalc
solv agree fairly

well with the experimental values -G
exp
solv. The deviations can be

attributed to entropic effects that are not accounted for in the present
framework.

-G
exp
solv (kJ/mol)

Ion -Gcalc
solv (kJ/mol) Ref. [81] Ref. [80]

Na+ −429 −424 −371
Cs+ −328 −306 −253
Cl− −388 −304 −373
I− −328 −243 −311

dielectric profile around q = 0 as shown in Eq. (13) while L−

is obtained by shifting the same profile 0.09 nm towards a
smaller radius corresponding to the shift between the two first
minima of q = ±1 e in Fig. 5(a). We obtain L(+) = −234.9
kJ/mol/e2 and L(−) = −353.0 kJ/mol/e2 which is similar
to the results for the chloride-sized ion in [71] (see [79]).
Therefore, nonlinear dielectric effects appear to affect the
solvation free energy only through the sign, but not the
magnitude, of the ion charge. This observation, which was
noted earlier by Bardhan et al. [71], may be understood to
some extent by inspection of Fig. 5(b), where the height of the
positive and negative peaks of εr (r) is scaled up roughly in an
equal manner as the charge q is increased leading to canceling
contributions in Eq. (13).

In order to verify further the validity of our calculations we
use the framework established above to calculate the solvation
free energies of Na+, Cs+, Cl−, and I− ions. The corresponding
dielectric profiles are shown in Fig. S3 of the SM. Table III
shows that our results are in fair agreement with available
experimental data which themselves scatter over a fairly large
range of 50 to 70 kJ/mol which is due to the large uncertainty
of free solvation energy of a proton. Our calculated values
are slightly more negative than the experimental values for
both anions and cations, which is not surprising as we neglect
entropic effects due to the creation of the cavity. These are
negative for all ions considered [80,81], contribute with a
negative sign to the free energy, and would thus bring our
values closer towards the experimental data.

III. CONCLUSION

We extracted the radial component of the dielectric re-
sponse of water around a spherical solute from classical
molecular dynamics simulations using two fundamentally
different approaches: the first is based on the concept of a
spatially dependent, yet local, dielectric constant εr (r) while
the second approach departs from the nonlocal wave-vector-
dependent dielectric function ε(k) of bulk water. We find that
both concepts exhibit good agreement, showing a strongly
oscillatory behavior of εr (r) as a function of the distance to
the solute. The agreement demonstrates that even the drastic
change in the radial component of the static local dielectric
constant around a spherical solute can be explained by water’s
nonlocal bulk properties without the need to invoke a change
in water structure. For charged solutes we find a pronounced
asymmetry between cations and anions: while the former
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modify mainly the amplitude of the oscillations in εr (r)
compared to an uncharged solute, the dielectric profiles of
the latter are significantly shifted towards smaller radii. This
shift provides a direct explanation for the commonly held view
that anions appear to be “dielectrically smaller” than their
positively charged counterparts.

Our detailed dielectric profiles can furthermore be useful
for the calculation of attractive and repulsive forces between
charged side groups in proteins, for the improvement of
implicit solvent simulation models or for understanding co-
solvent effects in protein folding. Extending our methodology
to the frequency-dependent dielectric function may shed new
light onto recent experiments [31,32,34,68] where changes in
the dielectric spectrum are often related to changes in the local
water structure and dynamics around the solvated molecule.
Based on our results we speculate that only part of the observed
spectral changes may be caused by a restructuring of interfacial
water while the other part may be traced back directly to the
complex structure of bulk water itself.

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding from the
Volkswagen Foundation and the Deutsche Forschungsgemein-
schaft Graduiertenkolleg 1640. Computing time has been
granted by the John von Neumann Institute for Computing
(NIC) and provided on the supercomputer JUROPA at Jülich
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APPENDIX: DETAILED DERIVATIONS

1. Radial component of the inverse dielectric permittivity

The electric field due to a point charge in vacuum is

Eext(r) = 1
4πε0

q

r2
êr . (A1)

Assuming an infinitely large dielectric with spherical sym-
metry and the point charge located in the center the internal
electric field is

Eint(r) = 1
4πε0εr (r)

q

r2
êr , (A2)

leading to a relation between the radial components of both
fields:

Eint
r (r) = Eext

r

εr (r)
. (A3)

The internal electric field creates a radial polarization -Pr (r)
of the medium:

-Pr (r) = ε0(εr (r) − 1)Eint
r (r) = εr (r) − 1

εr (r)
q

4πr2
. (A4)

We next calculate the same quantity (mean polarization) by
using statistical mechanics. The mean value for the NV T
system with applied external electric field is

⟨P⟩q =
∫

Pe−β(H+W (q))d"∫
e−β(H+W (q))d"

, (A5)

where H is the Hamiltonian of the unperturbed sys-
tem and W (q) is the energy shift due to the external

field:

W (q) = −
∫

Eext · Pd r

= − 4π

∫ Rdrop

0
Eext

r (r)Pr (r)r2dr

= − q

ε0

∫ Rdrop

0
Pr (r)dr. (A6)

For small perturbations q one can linearize Eq. (A5):

⟨P⟩q ≈ ⟨P⟩0 + q
∂⟨P⟩
∂q

= ⟨P⟩0 − βq

{〈
P

∂W

∂q

〉

0
− ⟨P⟩0

〈
∂W

∂q

〉

0

}
, (A7)

where ⟨·⟩0 denotes averaging of the system without an external
field. As we are interested in the change of the polarization,
-P , we can write

-P = −βq

{〈
P

∂W

∂q

〉

0
− ⟨P⟩0

〈
∂W

∂q

〉

0

}
. (A8)

Combining Eqs. (A4), (A6), and (A8) gives

εr (r) − 1
εr (r)

= 4πβr2

ε0
(⟨Pr (r)Mr⟩0 − ⟨Pr (r)⟩0⟨Mr⟩0) (A9)

with

Mr =
∫ Rdrop

0
Pr (r ′)dr ′.

This leads to the final expression given as Eq. (1) in the main
text:

ε−1
r (r) = 1 − 4πβr2

ε0
(⟨Pr (r)Mr⟩0 − ⟨Pr (r)⟩0⟨Mr⟩0). (A10)

2. Polarization from charge distribution

As the radial field is perpendicular to all dielectric bound-
aries in the system, the displacement field is continuous
including the boundary of the droplet:

ε0E
ext
r = ε0E

int
r + Pr. (A11)

The internal electric field is the sum of the external field and
the electric field due to the polarization:

ε0E
ext
r (r) = ε0E

ext
r (r) + ε0E

pol
r (r) + Pr (r), (A12)

so we get

Pr (r) = −ε0E
pol
r (r). (A13)

Using the Gauss theorem we get

∇ · Epol(r) = ρ int(r)
ε0

, (A14)

where the internal charge density ρ int(r) consists of the partial
charges of the molecules. Using again the spherical symmetry
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we get

1
r2

∂

∂r

(
r2Epol

r (r)
)

= ρ int(r)
ε0

, (A15)

[
r2Epol

r (r ′)
]r

0 =
∫ r

0

r ′2ρ int(r ′)
ε0

dr ′, (A16)

r2Epol
r (r) − 0 =

∫ r

0

r ′2ρ int(r ′)
ε0

dr ′. (A17)

Combining Eqs. (A13) and (A17), one gets

Pr (r) = − 1
r2

∫ r

0
r ′2ρ int(r ′)dr ′. (A18)

3. Derivation of the solvation energy

The change in the field energy due to the dielectric medium
is given by

-Wel = 1
2

∫

V

(
D · Eint − D0 · Eext)dV, (A19)

where D is the displacement field inside the medium and D0
the displacement field in vacuum. (Note that for the present
geometry D = D0.) Using the relations D = ε0εEint and
D0 = ε0 Eext yields

-Wel = 1
2
ε0

∫

V

(
εEint · Eint − Eext · Eext)dV . (A20)

We now use that Eint = ε−1 Eext and Eext = 1
4πε0

q
r2

r
r

to find

-Wel = 1
8πε0

∫ Rdrop

0
(ε−1(r) − 1)

q2

r2
dr. (A21)

Assuming that the solvation energy is only determined by
the electrostatic interactions, we set the Gibbs free energy
-Gsolv = -Wel to obtain Eq. (13) of the main text. We
finally note that, strictly speaking, our drop corresponds to
an NV T ensemble and thus -Wel to the Helmholtz free
energy for which, however, no experimental data are available.
Yet, for the small solute inside the large water drop we
expect Gibbs and Helmholtz free energies to be virtually
identical.
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