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Long-lived anomalous thermal diffusion induced by elastic cell membranes on nearby particles
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The physical approach of a small particle (virus, medical drug) to the cell membrane represents the crucial first
step before active internalization and is governed by thermal diffusion. Using a fully analytical theory we show
that the stretching and bending of the elastic membrane by the approaching particle induces a memory in the
system, which leads to anomalous diffusion, even though the particle is immersed in a purely Newtonian liquid.
For typical cell membranes the transient subdiffusive regime extends beyond 10 ms and can enhance residence
times and possibly binding rates up to 50%. Our analytical predictions are validated by numerical simulations.
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I. INTRODUCTION

Endocytosis, the uptake of a small particle by a living cell is
one of the most important processes in biology [1–3]. Current
research is focused mainly on the biophysical and biochemical
mechanisms that govern endocytosis when particle and cell
are in direct physical contact. Much less investigated, yet
equally important, is the approach of the particle to the
cell membrane before physical contact is established [4].
In many physiologically relevant situations, e.g., inside the
blood stream, the cell and the particle are both suspended in
a surrounding liquid and the approach is governed by thermal
diffusion of the small particle. The thermal diffusion of small
particles (fibrinogen) naturally occurring in human blood has
furthermore been suggested as the root cause of red blood cell
aggregation [5–7].

Thermal diffusion of a spherical particle in a bulk fluid
is well understood and governed by the celebrated Stokes-
Einstein relation. This relation builds a bridge between the
particle mobility when an external force is applied to it
and the random trajectories observed when only thermal
fluctuations are present. Particle mobilities and thermal dif-
fusion near solid walls have been thoroughly investigated
both theoretically [8–13] and experimentally [14–25] finding
a reduction of the particle mobility due to the proximity of
the wall. Some theoretical works have investigated particle
mobilities and diffusion close to fluid-fluid interfaces endowed
with surface tension [26–29] or surface elasticity [30–32]
with corresponding experiments [33–39]. For the case of
a membrane with bending resistance transient subdiffusive
behavior has been observed in the perpendicular direction [40].
Regarding biological cells, recent experiments have measured
particle mobilities near different types of cells as well as giant
unilamellar vesicles (GUVs), both of which possess an elastic
membrane separating two fluids, and found that the mobility
near the cell walls does decrease but not as strongly as near a
hard wall [4].

Here we derive a fully analytical theory for the diffusion
of a small particle in the vicinity of a realistic cell membrane
possessing shear and bending resistance with fluid on both
sides. As the typical sizes and velocities are small, the theory
is derived in the small Reynolds number regime neglecting
the nonlinear term, but including the unsteady contribution in
the Navier-Stokes equations. Our most important finding is
that there exists a long-lasting subdiffusive regime with local

exponents as low as 0.87 extending over time scales beyond
10 ms. Such behavior is qualitatively different from diffusion
near hard walls where the diffusion, albeit being slowed
down, still remains normal (i.e., the mean-square displacement
increases linearly with time). Remarkably, our system exhibits
subdiffusion in a purely Newtonian liquid whereas most
commonly subdiffusion is observed for particles in viscoelastic
media. The subdiffusive regime increases the residence time of
the particle in the vicinity of the membrane by up to 50% and
is thus expected to be of important physiological significance.
Our analytical particle mobilities are quantitatively verified
by detailed boundary-integral simulations. Power-spectral
densities, which are amenable to direct experimental validation
using optical traps, are provided.

II. RESULTS

A spherical particle with radius R = 100 nm is located
at a distance z0 = 153 nm above an elastic membrane and
exhibits diffusive motion as illustrated in the inset of Fig. 1.
The membrane has a shear resistance κs = 5 × 10−6 N/m
and bending modulus κb = 2 × 10−19 Nm, which are typical
values of red blood cells [41]. The area dilatation modulus is
κa = 100κs. The fluid properties correspond to blood plasma
with viscosity η = 1.2 mPas. Figure 1 shows the mean-square
displacement (MSD) for parallel as well as perpendicular
motion as obtained from our fully analytical theory to be
described below. For short times (t < 50 µs) the MSD follows
a linear behavior with the normal bulk diffusion coefficient
D0 since the membrane does not have sufficient time to
react on these short scales. This is in agreement with a
simple balance between viscosity and elasticity for shear,
τs = ηR/κs ≈ 37 µs, and bending, τb = ηR3/κb ≈ 22 µs. For
t > 50 µs we observe a downward bending of the MSD,
which is a clear signature of subdiffusive behavior. Indeed, as
shown in the insets of Fig. 1, the local exponent α = ∂ log⟨x2⟩

∂ log t

diminishes from 1 down to 0.92 in the parallel and 0.87 in the
perpendicular direction. The subdiffusive regime extends up
to 10 ms in the parallel and even further in the perpendicular
direction, which is long enough to be of possible physiological
significance. Finally, for long times, the behavior turns back
to normal diffusion with α ≈ 1. Compared to the short-time
regime, however, the diffusion coefficient is now significantly
lower and approaches the well-known behavior near a solid
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FIG. 1. Mean-square displacement (red line) of a particle with
radius R = 100 nm diffusing z0 = 153 nm above a red blood cell
membrane in lateral (top) and perpendicular (bottom) direction as
predicted by our theory at T = 300 K. For short times t ! 50 µs
the MSD follows bulk behavior (black dashed line) while for long
times the MSD follows hard-wall behavior (blue dash-dotted line). In
between, a subdiffusive regime is evident extending up to 10 ms and
beyond. Insets show the local exponent which goes down until 0.87
for perpendicular diffusion.

hard wall with Dwall,∥ = D0(1 − 9/16R/z0) in the parallel
and Dwall,⊥ = D0(1 − 9/8R/z0) in the perpendicular case,
respectively. Diffusion for long times therefore turns out to
depend only on the particle distance and to be independent of
the membrane properties.

In Fig. 2(a) we show the minimum of the local exponent for
different particle-membrane separations. Even for distances
ten times the particle radius, a significant deviation of the
local exponent from 1 is still observable. From the MSDs it is
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FIG. 2. (a) Minimum of the local exponent plotted against
particle-membrane separation. Significant subdiffusion is observed
up to distances roughly ten times the particle radius. (b) The time
required to diffuse one particle radius increases due to the presence
of the membrane thus leading to an enhanced residence time of
the particle in the vicinity of the membrane, which may increase
the probability of triggering endocytosis.
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FIG. 3. Predicted power-spectral density of position fluctuations
if the same bead as in Fig. 1 is confined by a typical optical trap
of strength K = 10−5 N/m [4]. Similar as in the MSD of Fig. 1 a
transition from hard-wall-like behavior (blue dash-dotted line) for
low frequencies to bulklike behavior (black dashed line) at high
frequencies is seen.

straightforward to estimate the time TD required by the particle
to diffuse a distance equal to its own radius, which gives
an approximate measure of the diffusion speed. As expected
based on the data from Fig. 1, diffusion in the perpendicular
direction is slowed down significantly more than for lateral
motion, see Fig. 2(b), in agreement with recent experimental
observations [4].

Experimentally, long MSDs can be difficult to measure
as the particle may move out of the focal plane during the
recording time. A commonly used technique is therefore to
confine the particle to its position using optical traps. One
then records the power spectral density (PSD) of particle fluc-
tuations around its equilibrium position. The PSDs predicted
by our theory for a typical optical trap with spring constant
K = 10−5 N/m [4] as a function of frequency f = ω/2π are
shown in Fig. 3. The general behavior of the unconstrained
system is not qualitatively altered by the optical confinement:
for high frequencies the behavior is bulklike (mirroring the
bulklike MSD at short times) while for low frequencies the
PSD approaches that expected near a solid wall (mirroring
the hard-wall-like MSD at long times). The frequency range
of the transition lies mainly below 1 kHz and should thus be
experimentally accessible.

III. THEORY

Our theoretical development leading to Figs. 1–3 proceeds
via the calculation of particle mobilities and the fluctuation-
dissipation theorem and can be sketched as follows (a detailed
derivation is given in Appendixes A–C). We consider a
spherical particle of radius R driven by an oscillating force
Fω(t) = F0e

iωt in a fluid with density ρ and dynamic viscosity
η whose complex mobility µ(ω) for a fixed ω is defined as

V ω(t) = µ(ω)Fω(t) (1)
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and can be separated into the three contributions

µ(ω) = µ0 + µu
0(ω) + )µ(ω,z0). (2)

Here, µ0 = 1/(6πηR) is the usual steady-state bulk mobility,

µu
0(ω) = µ0(e−Rλ

√
−i − 1), (3)

where λ2 = ρω/η is the correction due to fluid inertia [42]
and )µ(ω,z0) is the correction due to the elastic membrane
at distance z0. In order to derive the mobility corrections,
we employ the commonly used approximation of a small
particle (R/z0 ≪ 1). Using numerical simulations of a truly
extended particle, we will show below that this approximation
is surprisingly good even for R/z0 = 0.65. The problem is
thus equivalent to solving the unsteady Stokes equations with
an arbitrary time dependent point force F located at r0

−ρ
∂v

∂t
+ η∇2v − ∇p + Fδ(r − r0) = 0

∇ · v = 0 (4)

with the fluid velocity v, the pressure p, and the point force
position r0. The elastic membrane is located at z = 0, has
infinite extent in x and y directions, and is surrounded by fluid
on both sides. Following the usual approximation of small
deformations, we impose the traction jump at z = 0, which
follows from the Skalak [43] and Helfrich [44] laws for the
shear and bending resistance as detailed in Appendix A

)f x = −κs

3
(2(1 + C)ux,xx + ux,yy + (1 + 2C)uy,xy)

)f y = −κs

3
(uy,xx + 2(1 + C)uy,yy + (1 + 2C)ux,xy)

)f z = κb(uz,xxxx + 2uz,xxyy + uz,yyyy), (5)

where the membrane deformation is u and the notation u,·
denotes partial spatial derivatives. The moduli are κs for
shear resistance and κb for bending resistance while the ratio
between area dilatation and shear modulus is C = κa/κs. The
no-slip condition at the membrane surface relates the surface
deformation to the local fluid velocity

du
dt

= v

∣∣∣∣
z=0

. (6)

Together with Eqs. (4)–(6) this represents a closed mathemati-
cal problem for the velocity field v. For its solution, the Stokes
equations (4) are first Fourier transformed into frequency
space. The dependency on the x and y coordinates is Fourier
transformed into wave vectors qx and qy , which subsequently
allows us to consider the contributions of the longitudinal and
transversal velocity components separately [27]. After elimi-
nating the pressure, this leads to three differential equations for
the three velocity components for which an analytical solution
can be found. From the velocity field the mobility correction
of the particle is directly obtained. The details are given in
Appendix B.

The mobility correction is a tensorial quantity, which in
the present case has two components for the mobility parallel
)µ∥(ω,z0) and perpendicular )µ⊥(ω,z0) to the membrane.
Furthermore, the mobility correction in each direction can be
split into a contribution )µb due to bending resistance and a
contribution )µs due to shear resistance and area dilatation.

The final results are conveniently expressed in terms of the
dimensionless numbers:

β = 12z0ηω

κs + κa
,

βb = 2z0

(
4ηω

κb

)1/3

,

σ = z0

(
ρω

η

)1/2

, (7)

where β captures the effect of shear resistance and area
dilatation, βb the effect of bending resistance and σ the effect
of fluid inertia on the mobility corrections.

The mobility corrections are

)µ∥,s

µ0
= 3i

σ 2

R

z0

∫ ∞

0

s3(re−r − se−s)2

4(r − s)s2 − βσ 2
ds

+ 3i

4
R

z0

∫ ∞

0

s3e−2r

r
( 1+C

2 βr − is2
)ds, (8)

)µ∥,b

µ0
= 3i

σ 2

R

z0

∫ ∞

0

4rs7(e−r − e−s)2

16s5(r − s) − rβ3
bσ 2

ds, (9)

)µ⊥,s

µ0
= 6i

σ 2

R

z0

∫ ∞

0

s5(e−s − e−r )2

4(r − s)s2 − σ 2β
ds, (10)

)µ⊥,b

µ0
= 6i

σ 2

R

z0

∫ ∞

0

4s7(se−r − re−s)2

r
[
16s5(r − s) − rβ3

bσ 2
]ds, (11)

with r =
√

s2 + iσ 2. The integrals are well behaved and thus
amenable to straightforward numerical integration. The effect
of inertia on the diffusion has recently been investigated in
bulk systems [45–49]. However, as shown in the Supplemental
Material [50], for the realistic situation treated in Fig. 1, the
contribution of fluid inertia is completely negligible in the
frequency range that is affected by membrane elasticity, which
is the focus of this work.

In the following, we will thus consider the case σ = 0, for
which an analytical solution is possible:

)µ∥,s

µ0
= 3

8
R

z0

{
−5

4
+ β2

8
− 3iβ

8
+ iβ(1 + C)eiβ(1+C)

×E1[iβ(1 + C)] +
[
−β2

2
+ iβ

2

(
1 − β2

4

)]

×eiβE1(iβ)
}
, (12)

)µ∥,b

µ0
= 3

64
R

z0

{
−2 + iβ3

b

3
[φ+ + e−iβbE1(−iβb)]

}
, (13)

)µ⊥,s

µ0
= 9i

16
R

z0

1
β

[1 − 4eiβE5(iβ)], (14)

)µ⊥,b

µ0
= 3iβb

8
R

z0

[(
β2

b

12
+ iβb

6
+ 1

6

)
φ+ +

√
3

6
(βb + i)φ−

+ 5i

2βb
+ e−iβbE1(−iβb)

(
β2

b

12
− iβb

3
− 1

3

)]
, (15)
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with

φ± = e−izbE1(−izb) ± e−izbE1(−izb), (16)

where zb = jβb and j = e2iπ/3. Bar denotes complex
conjugate. En denotes the exponential integral En(x) =∫ ∞

1 e−xt /tndt [51].
From the frequency-dependent mobilities the mean-square

displacement in a thermally fluctuating system can be com-
puted using the fluctuation-dissipation theorem with the
velocity autocorrelation function φv(t) as an intermediate
step [52] as detailed in Appendix C

φv(t) = kBT

2π

∫ ∞

−∞
µ(ω)eiωt dω (17)

⟨x(t)2⟩ = 2
∫ t

0
(t − s)φv(s)ds. (18)

Using the mobilities from Eqs. (12)–(15), the MSD can be
analytically computed and the resulting equations are given in
Appendix C. In order to compute the MSDs shown in Fig. 1
mobilities are calculated using the initial particle-membrane
distance z0, which is equivalent to assuming a not too large
deviation of the particle from its initial position.

Similarly, the power spectral densities of the position
fluctuations as shown in Fig. 3 can be calculated as [12]

S(ω) = 2kBT Re[µ(ω)−1]
{ωRe[µ(ω)−1]}2 + {ωIm[µ(ω)−1] + K}2

. (19)

IV. MOBILITY SIMULATIONS

We use boundary-integral (BIM) simulations to obtain a
direct validation of the frequency-dependent mobilities and
to assess the accuracy of the point-particle approximation
for finite-radius particles. BIMs are a standard method for
solving the steady Stokes equations [53] including elastic
surfaces [54]. Some details on our implementation are given
in the SI. Compared with most other flow solvers, BIMs have
the advantage that they are able to treat a truly infinite fluid
domain thus excluding artifacts due to periodic replications of
the system.

We simulate a spherical particle driven by an oscillating
force with frequency ω. By recording the instantaneous par-
ticle velocity, the mobility correction )µ(ω) can be obtained
from the amplitude ratio and the phase shift between force and
velocity as illustrated in the SI.

In Fig. 4 we compare our theoretical prediction to the result
of BIM simulations with R/z0 = 0.1 and find excellent agree-
ment. Splitting the mobility correction into the contributions
due to shear and area resistance (green line in Fig. 4) on the
one hand and bending resistance (red line) on the other, we
find that bending resistance manifests itself at significantly
lower frequencies than shear resistance. As might intuitively
be expected, the parallel mobility is mainly determined by
shear resistance, while for the perpendicular mobility bending
resistance dominates. Yet, we note that for both directions,
shear and area resistance and bending resistance are important.
This becomes apparent especially at low frequencies: neither
shear and area resistance nor bending resistance alone are able
to recover the hard-wall limit. As shown in the SI, a similar
effect appears in the limit of infinitely stiff membranes: only

FIG. 4. The complex mobility of a spherical particle driven by
a sinusoidal force with frequency ω situated a distance z0 above the
membrane. Theoretical predictions from Eqs. (12)–(15) are shown
as black dashed lines (real part) and black solid lines (imaginary
part) and compared to BIM simulations shown as circles (real
part) and squares (imaginary part). The green and red lines show
the contributions due to shear and bending resistance, respectively.
For R/z0 = 0.1 (with C = 1, κsR

2/κb = 2) the agreement between
theory and simulations is excellent. For very low frequencies the hard
wall behavior is obtained (blue dashed line).

if shear and bending stiffness both tend to infinity does one
recover the hard-wall limit.

Finally, we investigate the validity of the point-particle
approximation for particles close to the interface. For this,

FIG. 5. The real part (dashed lines) and the imaginary part (solid
lines) of the complex mobility for a particle moving parallel (a) or
perpendicular (b) to a realistically modeled red blood cell membrane
with parameters corresponding to Fig. 1. Even for R/z0 = 0.65 as
used here the agreement is still good.
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we use the parameters as in Fig. 1. Even for R/z0 = 0.65 the
agreement is still surprisingly good as shown in Fig. 5.

V. CONCLUSION

We have presented a fully analytical theory for the thermal
diffusion of a small spherical particle in close vicinity to
an elastic cell membrane. The frequency-dependent particle
mobilities predicted by the theory are in excellent agreement
with boundary-integral simulations, even for surprisingly
large particles where the point-force approximation made
in the theory is no longer strictly valid. Independent of the
membrane properties, the mean-square displacement is shown
to be bulklike at short and hard-wall-like at very long times.
In between, however, there exists a significant time span
during which the particle shows subdiffusion with exponents
as low as 0.87. For membrane parameters corresponding to a
typical red blood cell the subdiffusive regime extends up to
and beyond 10 ms and may thus be of possible physiological
significance, e.g., for the uptake of drug carriers or viruses by a
living cell. Our results can be directly verified experimentally
by comparing the power-spectral densities of the position
fluctuations in Fig. 3.

In living cells the membrane elastic properties depend on
the local cholesterol level [55], which can lead to localized
patches of varying stiffness. According to our calculations,
adjusting the shear and bending rigidity would allow the
cell to specifically influence the endocytosis probability: An
enhanced bending stiffness combined with reduced shear
elasticity would reduce perpendicular diffusion—keeping the
approaching particle close to the membrane for a longer time—
and at the same time enhance parallel diffusion, allowing the
particle to survey more quickly the cell surface for favorable
biochemical binding sites.
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APPENDIX A: MEMBRANE MECHANICS

In this Appendix, we give the derivation of the linearized
tangential and normal traction jumps as stated in Eq. (5) of the
main text. Initially, the interface is described by the infinite
plane z = 0. Let the position vector of a material point before
deformation be A, and a after deformation. In the undeformed
state, we have A(x,y) = xex + yey , where ei , with i ∈ {x,y,z}
are the Cartesian base vectors. Hereafter, we shall reserve the
capital roman letters for the undeformed state. The membrane
can be defined using two covariant base vectors a1 and a2, to-
gether with the normal vector n. a1 and a2 are the local nonunit
tangent vectors to coordinate lines. In the Cartesian coordinate
system, a1 = a,x and a2 = a,y , where the comma denotes a
spatial derivative. The unit normal vector to the interface reads

n = a1 × a2

|a1 × a2|
. (A1)

It can be seen that the covariant base vectors in the undeformed
state are identical to those of the Cartesian base. The

displacement vector of a point on the membrane can be
written as

u = a − A = uxex + uyey + uzez. (A2)

The covariant base vectors are therefore

a1 = (1 + ux,x)ex + uy,xey + uz,xez, (A3)

a2 = ux,yex + (1 + uy,y)ey + uz,yez, (A4)

and the linearized normal vector reads

n ≈ −uz,xex − uz,yey + ez. (A5)

The components of the metric tensor in the deformed state
are defined by the inner product aαβ = aα.aβ . Note that Aαβ

is then nothing but the second-order identity tensor δαβ . From
Eqs. (A3) and (A4), aαβ can straightforwardly be computed.
The contravariant tensor (conjugate metric) is the inverse of
the covariant tensor. We directly have to the first order

aαβ ≈
(

1 − 2ux,x −2ϵ
−2ϵ 1 − 2uy,y

)
, (A6)

where 2ϵ = ux,y + uy,x is the engineering shear strain. In the
following, we will first derive the in-plane stress tensor. A
resistance to bending will be added independently by assuming
a linear isotropic model equivalent to the Helfrich model for
small deformations [56].

1. In-plane stress tensor

Here we use the Einstein summation convention, in which
a covariant index followed by the identical contravariant index
(or vice versa) is implicitly summed over the index. The
two invariants of the transformation are given by Green and
Adkins [57]

I1 = Aαβaαβ − 2, (A7)

I2 = det Aαβ det aαβ − 1, (A8)

where Aαβ = δαβ , is the contravariant metric tensor of the
undeformed state. The two invariants are found to be equal
and they are given by I1 = I2 = 2e = 2(ux,x + uy,y), where
e denotes the dilatation. The contravariant components of the
stress tensor ταβ are related to the strain energy W (I1,I2) via
a constitutive law. We have [58]

ταβ = 2
Js

∂W

∂I1
Aαβ + 2Js

∂W

∂I2
aαβ , (A9)

where Js =
√

1 + I2 ≈ 1 + e is the Jacobian determinant,
representing the ratio between the deformed and undeformed
local surface area.

Several models have been proposed in order to describe the
mechanics of elastic membranes. The neo-Hookean model is
characterized by a single parameter containing the membrane
elastic shear and area dilatation modulus, while the Skalak
model [43] uses two separate parameters for shear and area
dilatation resistance, respectively. The strain energy in the
Skalak model reads [59]

W SK = κs

12

((
I 2

1 + 2I1 − 2I2
)
+ CI 2

2

)
, (A10)
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where C = κa/κs is the ratio between the area dilatation
and the shear modulus. By taking C = 1, the Skalak model
predicts the same behavior as the neo-Hookean for small
deformations [58]. The calculations yield to the first order
a stress tensor in the form of

ταβ ≈ 2κs

3

(
ux,x + Ce ϵ

ϵ uy,y + Ce

)
. (A11)

2. Bending resistance

Under the action of an external load, the initially plane
membrane bends. For small membrane curvatures, the bending
moment M can be related to the curvature tensor via the linear
isotropic model [56,60]

Mβ
α = −κb

(
bβ

α − Bβ
α

)
, (A12)

where κb is the bending modulus, having the dimension
of energy. Here bα

β is the mixed version of the second
fundamental form, which follows from the curvature tensor
(second fundamental form)

bαβ = n.aα,β for α,β ∈ {1,2} (A13)

via bβ
α = bαδa

δβ ≈ uz,αβ . As the surface reference is a flat
membrane, Bβ

α therefore vanishes. The bending moment reads

Mβ
α ≈ −κbuz,αβ . (A14)

The surface transverse shear vector Q is obtained from a local
torque balance with the exerted moment by [60]

∇αMαβ − Qβ = 0, (A15)

where ∇α is the covariant derivative defined for a contravariant
tensor Mαβ by

∇λM
αβ = ∂λM

αβ + 0α
ληM

ηβ + 0
β
ληM

αη, (A16)

where 0λ
αβ are the Christoffel symbols of the second kind,

defined by 0λ
αβ = aα,β .aλ, and aλ are the contravariant basis

vectors, which are related to those of the covariant basis via
the contravariant metric tensor by aα = aαβ aβ . To first order,
only the partial derivative in Eq. (A16) remains.

The raising and lowering indices operation on the second-
order tensor M implies that Mαβ = aαγ aβδMγ δ , which, to
the first order, is the same as Mβ

α given by Eq. (A14). The
contravariant component of the transverse shear vector is
therefore

Qβ ≈ −κbuz,αβα. (A17)

3. Equilibrium equation

The membrane equilibrium condition including both the
shear and the bending forces reads [60]

∇αταβ − bβ
αQα = −)f β , (A18)

ταβbαβ + ∇αQα = −)f z, (A19)

where )f β , with β ∈ {x,y} is the tangential traction jump at
the elastic wall, and )f z is the normal traction jump. The
second term on the left-hand side (LHS) of Eq. (A18) is
irrelevant in the first-order approximation. The same is true
for the first term on the LHS of Eq. (A19).

Finally, the linearized traction jump across the membrane
is

κs

3
()∥uβ + (1 + 2C)e,β ) = −)f β,

κb)
2
∥uz = +)f z, (A20)

where )∥f = f,xx + f,yy is the horizontal Laplace-Beltrami
of a given function f . Eqs. (A20) are equivalent to Eqs. (5) of
the main text.

APPENDIX B: DERIVATION OF PARTICLE MOBILITIES

1. Hydrodynamic equations in Fourier space

We start by transforming Eqs. (4) of the main text to Fourier
space. The spatial 2D Fourier transform for a given function
f is defined as

F {f (ρ)} = f̃ (q) =
∫

R2
f (ρ)e−iq.ρd2ρ, (B1)

where ρ = (x,y) is the projection of the position vector r onto
the horizontal plane, and q = (qx,qy) is the Fourier transform
variable. Similarly as in Bickel [27], all the vector fields
are subsequently decomposed into longitudinal, transversal
and normal components. For a given quantity Q̃, whose
components are (Q̃x,Q̃y) in the Cartesian coordinate base,
its components in the new orthogonal base (Q̃l,Q̃t ) are given
by the following transformation

(
Q̃x

Q̃y

)
= 1

q

(
qx qy

qy −qx

)(
Q̃l

Q̃t

)
, (B2)

where q = |q|. Note that the inverse transformation is given
also by Eq. (B2). Since the membrane shape depends on
the history of the particle motion we also perform a Fourier
analysis in time, which for a function f (t) is

F {f (t)} = f (ω) =
∫

R
f (t)e−iωt dt. (B3)

In the following, the Fourier-transformed function pair f (t)
and f (ω) are distinguished only by their argument while the
tilde is reserved to denote the spatial two-dimensional (2D)
Fourier transforms. The unsteady Stokes equations (4) thus
become

−(iρω + ηq2)ṽl + ηṽl ,zz − iqp̃ + Flδ(z − z0) = 0 (B4)

−(iρω + ηq2)ṽt + ηṽt ,zz + Ftδ(z − z0) = 0 (B5)

−(iρω + ηq2)ṽz + ηṽz,zz − p̃,z + Fzδ(z − z0) = 0 (B6)

iqṽl + ṽz,z = 0. (B7)

The pressure in Eq. (B4) can be eliminated using Eq. (B6).
Since the continuity equation (B7) gives a direct relation
between the components ṽl and ṽz, the following fourth-order
differential equation for vz is obtained

ṽz,zzzz − (2q2 + iλ2)ṽz,zz + q2(q2 + iλ2)ṽz

= q2

η
Fzδ(z − z0) + iqFl

η
δ′(z − z0), (B8)
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where δ′ is the derivative of the δ Dirac function, satisfying
the property xδ′(x) = −δ(x) for a real x, and λ2 = ρω/η.

2. Boundary conditions

a. Velocity boundary conditions

At the interface z = 0, the velocity components are contin-
uous

[ṽα] = 0, (B9)

where α ∈ {l,t,z} and [f ] = f (z = 0+) − f (z = 0−) denotes
the jump of a quantity f across the interface. In addition, the
no-slip condition Eq. (6) gives

ṽα(q,z = 0,ω) = iωũα(q,ω). (B10)

b. Tangential stress jump

The presence of the membrane leads to elastic stresses
which, in equilibrium, are balanced by a jump in the fluid
stress across the membrane:

[σzα] = [η(vz,α + vα,z)] = )f α, (B11)

where α ∈ {x,y}. The tangential traction jump )f α for an
elastic membrane experiencing a small deformation is given
by Eq. (5). We mention that only the resistance to shear and
area dilatation is relevant to the first order approximation for
the tangential traction jump.

Using the transformations given by (B2) together with the
no-slip condition Eq. (B10), we straightforwardly express the
first and second derivatives of ux and uy in our new orthogonal
basis. After some algebra, the two tangential conditions are

[ṽt,z] = −iαsq
2ṽt |z=0, (B12)

[iqṽz + ṽl,z] = −4iαq2ṽl|z=0, (B13)

where

αs = κs/3ηω (B14)

is a characteristic length for shear and

α = αs/B = (κs + κa)/6ηω (B15)

with B = 2/(1 + C).
Equation (B12) gives the jump condition at the interface

for the transverse velocity component ṽt . Note that the latter
is independent of area dilatation, whereas both κs and κa
are involved in the longitudinal and the normal velocities.
Equation (B13) can be written by employing the incompress-
ibility equation (B7) together with the continuity of the normal
velocity across the interface as

[ṽz,zz] = −4iαq2ṽz,z|z=0. (B16)

c. Normal stress jump

The normal-normal component of the jump in the stress
tensor reads

[σzz] = [−p + 2ηvz,z] = )f z. (B17)

Only the bending effect is present in )f z to the first order,
as it can be seen from Eq. (5). Using the incompressibility

equation (B7) and the continuity of the longitudinal velocity
component across the interface, the normal stress jump in
Fourier space reads

[ṽz,zzz] = 4iα3
bq

6ṽz|z=0, (B18)

where

αb = 3

√
κb

4ηω
, (B19)

is a characteristic length for bending.

3. Green’s functions

The Green’s functions are tensorial quantities, which
describe the fluid velocity in direction α

ṽα = G̃αβ F̃β, (B20)

for α,β ∈ {l,t,z}. For computing the particle mobilities the
relevant quantities are the diagonal components G̃t t , G̃zz, and
G̃ll , which can be derived by solving first the independent
Eq. (B5) for G̃t t , then Eq. (B8) for G̃zz and finally obtaining
G̃ll from solving Eq. (B8) and employing the incompressibility
condition (B7) as detailed in the following.

a. Transverse-transverse component

Let us denote by K the principal square root of q2 + iλ2,
i.e.,

K =

√
q2 +

√
q4 + λ4

2
+ i

√
−q2 +

√
q4 + λ4

2
. (B21)

Note that for the steady Stokes equations, λ = 0 and therefore
K = q. The general solution of Eq. (B5) for the transverse
velocity component is

ṽt =

⎧
⎨

⎩

Ae−Kz for z > z0,
BeKz + Ce−Kz for 0 < z < z0,
DeKz for z < 0.

(B22)

The integration constants A–D are determined by the
boundary conditions. ṽt is continuous at z = z0, whereas the
first derivative is discontinuous due to the δ Dirac function,

ṽt,z|z=z+
0

− ṽt,z|z=z−
0

= −Ft

η
. (B23)

In order to evaluate the four constants, two additional equations
must be provided. By applying the continuity of the transverse
velocity component at the interface together with the tangential
traction jump given by Eq. (B12), we find that the transverse-
transverse component of the Green’s function is given by

G̃t t = 1
2ηK

(
e−K|z−z0| + iαsq

2

2K − iαsq2
e−K(z+z0)

)
, (B24)

for z " 0 and by

G̃t t = 1
η

1
2K − iαsq2

e−K(z0−z), (B25)

for z # 0. For the steady Stokes equations, the solution reads

G̃t t = 1
2ηq

(
e−q|z−z0| + iαsq

2 − iαsq
e−q(z+z0)

)
, (B26)
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for z " 0 and

G̃t t = 1
ηq

1
2 − iαsq

e−q(z0−z), (B27)

for z # 0.

b. Normal-normal component

As we are interested here in G̃zz we set F̃l = 0 in Eq. (B8).
The general solution of this fourth-order differential equation
is

ṽz =

⎧
⎨

⎩

Ae−qz + Be−Kz for z > z0,
Ceqz + De−qz + EeKz + Fe−Kz for 0 < z < z0,
Geqz + HeKz for z < 0.

(B28)

At the singularity position, i.e., at z = z0, the velocity ṽz and
its first two derivatives are continuous. However, the δ Dirac
function imposes the discontinuity of the third derivative

ṽz,zzz|z=z+
0

− ṽz,zzz|z=z−
0

= q2Fz

η
. (B29)

At the membrane, ṽz and its first derivative are continuous.
However, shear and bending impose a discontinuity in the sec-
ond and third derivatives respectively [Eqs. (B16) and (B18)].
The system can readily be solved in order to determine the
constants. The calculations are straightforward but lengthy and
thus omitted here. We find that the normal-normal component
of the Green’s function is given in a compact form by

G̃zz = q

2µKZS

[
Ke−q|z−z0| − qe−K|z−z0|

+ sgn (z)
2iαq3K(P − Q)
ZPQ(2iαq2 − S)

(e−q|z| − e−K|z|)

+ 2iα3
bq

5(qP − KQ)
ZPQ(2iα3

bq
5 − KS)

(Ke−q|z| − qe−K|z|)
]
. (B30)

Here P = eqz0 , Q = eKz0 , S = K + q, and Z = K − q.
For the steady Stokes equations, i.e., by taking the limits

when K → q and Q → P , one gets

G̃zz = 1
4ηq

[
(1 + q|z − z0|)e−q|z−z0|

+
(

iαzz0q
3

1 − iαq
+ iα3

bq
3(1+qz0)(1+qz)

1−iα3
bq

3

)
e−q(z+z0)

]
,

(B31)

for z " 0 and

G̃zz = 1
4ηq

[
1 + q(z0 − z)

+ iαzz0q
3

1 − iαq
+ iα3

bq
3(1 + qz0)(1 − qz)

1 − iα3
bq

3

]
e−q(z0−z),

(B32)

for z # 0. Note that both the shear and the bending moduli
are involved in the normal-normal component of the Green’s
functions.

c. Longitudinal-longitudinal component

When the normal force Fz is set to zero in Eq. (B8), and
only a tangential force Fl is applied, the derivative of the Dirac
function imposes the discontinuity of the second derivative at
z = z0, whereas the third derivative is continuous. We have

ṽz,zz|z=z+
0

− ṽz,zz|z=z−
0

= iqFl

η
. (B33)

After solving Eq. (B8) for the normal velocity ṽz, the
longitudinal velocity ṽl can directly be obtained thanks to the
incompressibility equation (B7). We find that the longitudinal-
longitudinal component G̃ll is

G̃ll = 1
2ηZS

[
Ke−K|z−z0| − qe−q|z−z0|

+ 2iαq2(KP − qQ)
ZPQ(2iαq2 − S)

(qe−q|z| − Ke−K|z|)

+ sgn (z)
2iα3

bq
6K(P − Q)

ZPQ
(
2iα3

bq
5 − KS

) (e−q|z| − e−K|z|)
]
.

(B34)

When the steady Stokes equations are considered, one
simply gets

G̃ll = 1
4ηq

[
(1 − q|z − z0|)e−q|z−z0|

+
(

iαq(1 − qz0)(1 − qz)
1 − iαq

+ izz0α
3
bq

5

1 − iα3
bq

3

)
e−q(z+z0)

]
,

(B35)

for z " 0 and

G̃ll = 1
4ηq

[
1 − q(z0 − z)

+ iαq(1 + qz)(1 − qz0)
1 − iαq

+ izz0α
3
bq

5

1 − iα3
bq

3

]
e−q(z0−z),

(B36)

for z # 0.

4. Particle mobilities

We now obtain the mobility corrections defined in Eq. (1)
and given specifically in Eqs. (8)–(11) (including the inertial
term) and Eqs. (12)–(15) (without fluid inertia) of the main
text. For this, using Eq. (B2) on Eq. (B20), one derives
the transformation of the tensorial Green’s functions back to
Cartesian directions:

G̃xx(q,z,ω) =
q2

y

q2
G̃t t (q,z,ω) + q2

x

q2
G̃ll(q,z,ω), (B37)

G̃yy(q,z,ω) = q2
x

q2
G̃t t (q,z,ω) +

q2
y

q2
G̃ll(q,z,ω). (B38)

We then subtract the infinite space Green’s functions in the
Fourier domain which can be obtained via the above derivation
with the membrane moduli set to zero, i.e.,

)G̃(0)
γ γ (q,z,ω) = G̃γ γ (q,z,ω) − G̃γ γ (q,z,ω)|α,αb=0, (B39)
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where γ ∈ {x,y,z}. This defines the wave-vector-dependent
corrections

)G̃∥(q,z,ω) = G̃xx(q,z,ω) − G̃(0)
xx (q,z,ω),

= G̃yy(q,z,ω) − G̃(0)
yy (q,z,ω), (B40)

)G̃⊥(q,z,ω) = G̃zz(q,z,ω) − G̃(0)
zz (q,z,ω).

Due to the point-particle approximation it is sufficient to
obtain the fluid velocity at the particle position which is
equal to the velocity of the particle itself. Instead of the full
inverse Fourier transform of the Green’s functions to real space
coordinates (ρ, z), we can thus limit ourselves to evaluate the
inverse Fourier transform of Eqs. (B40) at (ρ = 0, z = z0). By
passage to polar coordinates qx = q cos φ and qy = q sin φ,
the correction in the particle mobility to the first order of R/z0
can be obtained

)µ∥(ω) = 1
(2π )2

∫ 2π

0

∫ ∞

0
)G̃∥(q,φ,z = z0,ω)qdqdφ

)µ⊥(ω) = 1
2π

∫ ∞

0
)G̃⊥(q,z = z0,ω)qdq, (B41)

which directly lead to Eqs. (8)–(11) of the main text. A similar
procedure can be followed for the steady case where the fluid
inertia is neglected leading to Eqs. (12)–(15).

APPENDIX C: COMPUTING MEAN-SQUARE
DISPLACEMENTS FROM PARTICLE MOBILITIES

1. Time-dependent mobility corrections

A crucial step in order to compute the mean-square-
displacements as described in the following section is to
transform the frequency-dependent particle mobilities back to
the time domain. As shown in the Supplemental Material, the
inertial contribution to the mobility correction is negligible for
realistic scenarios and we therefore restrict ourselves from now
on to the case σ = 0. For the sake of simplicity, we do not start
from the real-space particle mobilities given in Eqs. (12)–(15),
but instead depart from the wave-vector-dependent Green’s
functions in Eq. (B40) to perform first an inverse Fourier
transform in time followed by an inverse Fourier transform
in space. Note that the inverse order is possible for the shear-
related part, but the calculations are much more complicated.

a. Parallel mobility

Shear effect. Considering only the part due to shear
resistance in Eqs. (B35) and (B26) and using Eq. (B40)
with (B39), we find after passing to polar coordinates:

)G̃∥,s(q,φ,ω)|z=z0

= iz0e
−2qz0

2η

[
sin2 φ

Tsω − iqz0
+ (1 − qz0)2 cos2 φ

BTsω − 2iqz0

]
, (C1)

where Ts = 6z0η/κs is a characteristic time for shear. The
temporal inverse Fourier transform reads

)G̃∥,s(q,φ,t)|z=z0 = −z0e
−2qz0θ (t)
2ηTs

[
e− qz0 t

Ts sin2 φ

+ (1 − qz0)2

B
e

−2qz0 t

BTs cos2 φ

]
. (C2)

An exact expression of the time-dependent mobility cor-
rection due to shear in the parallel case can then be obtained
by spatial inverse Fourier transform

)µ∥,s(τ )
µ0

= − 3
32

R

z0

θ (τ )
Ts

NB(τ )
(2 + τ )2(τ + B)4

, (C3)

where τ = t/Ts, and again B = 2/(1 + C). θ (t) denotes the
Heaviside step function, with θ (0) = 1/2 and

NB(τ ) = 4B3(1 + 2B) + 36B3τ + B(B2 + 48B + 8)τ 2

+ 40Bτ 3 + 2(B + 4)τ 4. (C4)

Bending effect. Considering the part due to bending resis-
tance we obtain

)G̃∥,b(q,φ,ω)|z=z0 = cos2 φ

4η

iq4z5
0

Tbω − iq3z3
0

e−2qz0 , (C5)

to give after applying the temporal inverse Fourier transform

)G̃∥,b(q,φ,t)|z=z0 = −q4z5
0θ (t) cos2 φ

4ηTb
e
−2qz0−

tq3z3
0

Tb . (C6)

The time-dependent mobility can immediately be obtained
after applying the inverse Fourier transform

)µ∥,b(t)
µ0

= −3
8

a

z0

θ (t)
Tb

∫ ∞

0
u5e

−2u− t
Tb

u3

du, (C7)

where Tb = 4ηz3
0/κb. The presence of u3 in the exponential

argument makes the analytical evaluation of this integral
impossible. To overcome this difficulty, we evaluate the
integral numerically and fit the result (as a function of t)
with an analytical empirical form which is necessary to
proceed further. This procedure is known as the Batchelor
parametrization [61]. It can be shown that the integral decays
following a t−2 law for larger times. Therefore, we can write

)µ∥,b(τ∥,b)
µ0

= −45
64

R

z0

θ (τ∥,b)
Tb

1
(
τ

p
∥,b + 1

) 2
p

, (C8)

where p = 1/2 is the fitting parameter and τ∥,b = (5/2)(t/Tb).
A comparison between the numerically obtained value of the
integral and the fitting formula is presented in the SI, where a
good agreement is obtained.

b. Perpendicular motion

Shear effect. Considering only the part due to shear
resistance in Eq. (B31) and using Eq. (B40) with Eq. (B39)
we find after passing to polar coordinates:

)G̃⊥,s(q,ω)|z=z0 =
iq2z3

0

2η

e−2qz0

BTsω − 2iqz0
. (C9)

The computation of the temporal inverse Fourier transform
leads to

)G̃⊥,s(q,t)|z=z0 = −
q2z3

0θ (t)
2ηBTs

e−2qz0(1+ t
BTs

). (C10)

After applying the spatial inverse Fourier transform to this
equation, we find that the time dependent mobility correction
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due to shear reads

)µ⊥,s(τ )
µ0

= − 9
16

R

z0

θ (τ )
Ts

B3

(τ + B)4
. (C11)

Bending effect. Considering only the part due to bending
resistance we obtain

)G̃⊥,b(q,ω)|z=z0 = iq2z3
0(1 + qz0)2

4η

e−2qz0

Tbω − iq3z3
0

. (C12)

The temporal inverse Fourier transform is

)G̃⊥,b(q,t)|z=z0 = −q2z3
0(1 + qz0)2θ (t)

4ηTb
e
−2qz0−

tq3z3
0

Tb . (C13)

After Fourier-transform in space, the time-dependent mo-
bility correction due to bending is expressed by the following
improper integral

)µ⊥,b(t)
µ0

= −3
4

a

z0

θ (t)
Tb

∫ ∞

0
u3(1 + u)2e

−2u− tu3
Tb du. (C14)

As above, we use the Batchelor parametrization [61] to
represent the integral. At t = 0, the integral above can be
solved analytically, and it is equal to 15/4. At larger times, the
integral decays monotonically following a t−4/3 law. We set

)µ⊥,b(τ⊥,b)
µ0

= −45
16

R

z0

θ (τb)
Tb

1
(
τ

p
⊥,b + 1

) 4
3p

, (C15)

where τ⊥,b = (9π/4)(t/Tb) and p = 2/3 is a fitting parameter,
governing the evolution of the mobility correction at short
times. Again, the fitting formula and the numerical solution are
in excellent agreement as seen in the Supplemental Material.

2. Mean-square displacements

The dynamics of a Brownian particle are governed by the
generalized Langevin equation [62]

m
dvα

dt
= −

∫ t

−∞
γα(t − t ′)vα(t ′)dt ′ + F (t), (C16)

where m is the particle mass and vα is its velocity in direction
α = ∥, ⊥. γα(t) denotes the time dependent friction retardation
function (expressed in kg/s2), and F is the random force which
is zero on average. The random force results from the impacts
with the fluid molecules due to the thermal fluctuation. The
relation between the mobility and the friction function is given
by ([52], Eq. (1.6.4), p. 32)1

µα(ω) = 1
imω + γα[ω]

, (C17)

where γα[ω] is the one-sided Fourier transform of the retarda-
tion function defined by

γα[ω] =
∫ ∞

0
γα(t)e−iωt dt. (C18)

1Note that the retardation function as defined by Kubo in Ref. [52]
does not incorporate the particle mass m, i.e., γ (t) as it appears in
the generalized Langevin equation is expressed in s−2 while ours in
kg/s2. That is the reason why m appears as a factor in Eq.(1.6.4),
p. 32 and Eq. (1.6.14), p. 34.

The frictional forces and the random forces are not
independent quantities, but are related to each other via
the fluctuation-dissipation theorem (FDT) [62]. According
to the FDT, the velocity autocorrelation function (VACF) has
the following expression ([52], Eq. (1.6.14), p. 34)

φv,α(t) = ⟨vα(0)vα(t)⟩ = kBT

2π

∫ ∞

−∞
µα(ω)eiωt dω. (C19)

In the overdamped regime, i.e., for a massless particle,
Eq. (C19) is reduced to

φv,α(t) = D0

(
2δ(t) + )µα(t)

µ0

)
, (C20)

where D0 = kBT µ0, is the bulk diffusion coefficient given by
the Einstein relation [63].

Next, the particle MSDs can be computed knowing the
VACF as [62]

⟨x(t)2⟩ = 2
∫ t

0
(t − s)φv,∥(s)ds

⟨z(t)2⟩ = 2
∫ t

0
(t − s)φv,⊥(s)ds, (C21)

which can be conveniently split up into a bulk contribution and
a correction defined by:

)∥(t) = 1 − ⟨x(t)2⟩
2D0t

and )⊥(t) = 1 − ⟨z(t)2⟩
2D0t

. (C22)

By inserting the time-dependent mobility corrections de-
rived in Eqs. (C3), (C8), (C11), (C15) in Eq. (C20) and using
Eqs. (C21) we obtain analytical expressions for the excess
mean-square-displacement as follows:

)⊥,s(τ ) = 3
16

R

z0

τ (3B + 2τ )
2(B + τ )2

, (C23)

)⊥,b(τ⊥,b) = 15
16

R

z0

2
π

[
arctan τ

1
3

⊥,b − 2

τ
1
3

⊥,b

+ 2
τ⊥,b

ln
(

1 + τ
2
3

⊥,b

)]
, (C24)

)∥,s(τ ) = 15
32

R

z0

1
10

[
(2τ + 3B)(5τ + 4B)

(B + τ )2

− 4B

τ
ln

(
1 + τ

B

)
− 16

τ
ln

(
1 + τ

2

)]
, (C25)

)∥,b(τ∥,b) = 3
32

R

z0

[
τ

3/2
∥,b + 2τ∥,b + 9√

τ∥,b + 6
√

τ∥,b(1 + √
τ∥,b)2

− 6
τ∥,b

ln(1 + √
τ∥,b)

]
. (C26)
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