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We study the motion of a solid particle immersed in a Newtonian fluid and confined between two parallel elastic
membranes possessing shear and bending rigidity. The hydrodynamic mobility depends on the frequency of
the particle motion due to the elastic energy stored in the membrane. Unlike the single-membrane case, a
coupling between shearing and bending exists. The commonly used approximation of superposing two single-
membrane contributions is found to give reasonable results only for motions in the parallel, but not in the
perpendicular direction. We also compute analytically the membrane deformation resulting from the motion
of the particle, showing that the presence of the second membrane reduces deformation. Using the fluctuation-
dissipation theorem we compute the Brownian motion of the particle, finding a long-lasting subdiffusive regime
at intermediate time scales. We finally assess the accuracy of the employed point-particle approximation via
boundary-integral simulations for a truly extended particle. They are found to be in excellent agreement with
the analytical predictions.
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I. INTRODUCTION

The hydrodynamic motion of nanoparticles near elas-
tic membranes plays an essential role in a variety of bi-
ological processes and medical applications. Examples
include the potential use of nanoparticles as drug deliv-
ery agents1–3 or possible adverse health effects due to
nanoparticles generated, e.g., from combustion processes
and chemical industries4. One of the strongest biological
side effects is expected when nanoparticles are taken up
by living cells through endocytosis5–8 for which the hy-
drodynamically governed approach towards the cell mem-
brane is the essential first step.

Several theoretical and experimental studies have in-
vestigated particle dynamics near a single boundary
such as a rigid wall9–32 or cylinder33, a fluid-fluid
interface34–41, a partial-slip interface42,43 and an elastic
membrane44–52. The latter stands apart from both rigid
and fluid interfaces as the stretching of the elastic mem-
brane by the moving particle introduces a memory effect
in the system.

The influence of a second boundary on particle dy-
namics has so far been studied only for hard walls. The
most simple approach is due to Oseen53 who suggested
that the hydrodynamic mobility of a sphere confined
between two rigid walls could be approximated by su-
perposition of the leading-order terms from each single
wall. A more rigorous attempt goes back to Faxén54
who computed in his dissertation the particle mobility
parallel to the walls for the special cases when the par-
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ticle is in the mid-plane or the quarter-plane between
the two hard walls55. For an arbitrary location be-
tween the two walls, exact solutions for a point parti-
cle can be obtained in terms of convergent series using
the image technique56–59. For a truly extended parti-
cle, multipole expansions60 as well as joint analytical-
numerical solutions have been presented61,62. Experi-
mentally, the Brownian dynamics of a spherical particle
confined between two parallel rigid walls has been stud-
ied using direct imaging measurements in the parallel
direction63 who found good agreement with Oseen’s su-
perposition approximation. Dynamic-light-scattering57
and video microscopy combined with optical traps64,65
also found good agreement with theoretical predictions.
Despite the significant progress in this field, the particle
motion between two confining elastic interfaces has not
been studied so far. An understanding of how the par-
ticle motion is affected by two adjacent elastic walls can
be useful to model the diffusion of medical drugs across
the extracellular space between neighboring cells66 or the
transport of macromolecules across endothelial cells that
line the surface of blood vessels67.
In this paper, we derive an analytical theory for the

translational motion of a small solid particle confined
between two parallel elastic membranes with both shear
and bending resistance. The theoretical predictions are
confirmed by boundary integral simulations. We find
that shearing and bending contributions are intrinsi-
cally coupled which is in strong contrast to the single-
membrane case where shearing and bending parts are in-
dependent and add up linearly to produce the full particle
mobility51. We show that Oseen’s often used superposi-
tion approximation leads to a reasonably good predic-
tion of the particle mobility only for the parallel, but not
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Figure 1. Illustration of the problem setup: A spherical par-
ticle of radius a at vertical position z0 moves between two
membranes located at z = 0 and z = (1 + σ)z0. The mem-
branes have infinite extent in the x and y directions.

for the perpendicular motion, with errors in the mobility
correction as high as 55 %. Furthermore, we investigate
the membrane deformation induced by the moving parti-
cle and show that the presence of the second membrane
significantly reduces deformation compared to the single
membrane case. Finally, the subdiffusive nature of the
Brownian motion, which has recently been observed near
a single membrane44,51 is shown to be further enhanced
by the presence of the second membrane.

The paper is organized as follows. In Sec. II, we de-
tail the mathematical derivation of the particle mobility
for the motion perpendicular and parallel to the mem-
branes. In Sec. III, we present the boundary integral
method (BIM) and its implementation together with the
procedure that we use to extract the particle mobility.
Particle mobilities, membrane deformations and mean-
square displacements are provided in dimensionless form
in Sec. IV. Concluding remarks are offered in Sec. V.

II. MATHEMATICAL FORMULATION

A. Problem setup

We consider a small spherical solid particle of radius a
located at z = z0 > 0, moving between two parallel elas-
tic membranes having infinite extent in the xy plane. The
first undisplaced membrane is located at z = 0 and the
second one at z = (1 + σ)z0, where σ ≥ 1 is a parameter
(see Fig. 1 for an illustration.) For σ = 1, the particle
is at equal distance from the two membranes. The one-
membrane limit may be recovered by taking the limit
when σ tends to infinity. Furthermore, the fluid in the
whole domain is considered as incompressible and with
constant dynamic viscosity η.

B. Particle mobility

We aim at computing the particle mobility µαβ , a ge-
ometry and frequency dependent tensorial quantity that
relates the velocity V of a solid particle located at r0 to a
force F applied on its surface. Transforming to temporal
Fourier space, we have

Vα(ω) = µαβ(r0, ω)Fβ(ω) . (1)

Summation over repeated indices is assumed. The parti-
cle mobility can be split up into two contributions:

µαβ(r0, ω) = µ0 δαβ + ∆µαβ(r0, ω) , (2)

where µ0 = 1/(6πηa) is the common bulk mobility and
δαβ is the Kronecker tensor. The mobility correction
∆µαβ in the point particle approximation a � z0 is ex-
pressed as

∆µαβ(r0, ω) = lim
r→r0

(
Gαβ(r, r0, ω)− G(0)

αβ (r, r0)
)
, (3)

where Gαβ is the Green’s function of the fluid velocity v
in the presence of the membranes, defined as

vα(r, ω) = Gαβ(r, r0, ω)Fβ(ω) , (4)

and G(0)
αβ is the infinite space Green’s function, given by

G(0)
αβ (r, r0) = 1

8πη

(
δαβ
s

+ sαsβ
s3

)
, (5)

where s := r − r0 and s := |s|.
The particle mobility can be obtained after solving the

forced equations of fluid motion for the present boundary
conditions. We solve them by Fourier-transforming the
coordinates parallel to the membranes x and y. After-
ward, the mobility corrections are obtained from Eq. (3).
The particle mobility provides the memory kernel of
our system and serves as an input for the generalized
Langevin equation that governs the diffusional dynamics
of the Brownian particle, as will be described in details
in Sec. IV.

C. Stokes equations

For a small Reynolds number, the fluid velocity v(r, t)
and pressure p(r, t) are governed by the steady Stokes
equations

η∇2v −∇p+ F δ(r − r0) = 0 , (6)
∇ · v = 0 , (7)

where F (t) denotes a time-dependent point force (ex-
pressed in Newton) acting on the particle position r0 =
(0, 0, z0). Furthermore, δ signifies the three-dimensional
Dirac delta function. In previous a work51, we have
shown that the unsteady term in the momentum equation
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leads to negligible contribution in the mobility correction
and is thus not considered here. The no-slip boundary
condition at the membranes provides a direct link be-
tween the fluid velocity and the membrane displacement
field u(x, y), which at leading order in deformation reads

v = du
dt

∣∣∣∣
z=0

and v = du
dt

∣∣∣∣
z=(1+σ)z0

. (8)

Hereafter, we shall denote by zm the vertical position of
each undisplaced membrane, i.e. zm ∈ {0, (1+σ)z0}. The
velocity is continuous at zm whereas the stretching and
bending forces impose a discontinuity in the fluid stress
tensor. Deformation properties of the RBC membrane
are modeled by the Skalak model68 involving as parame-
ters the shear modulus κS and the area expansion modu-
lus κA

51. The membrane resists toward bending accord-
ing to the Helfrich model69. Membrane viscosity can in
principle be included into our model by adding an imagi-
nary part to the shear modulus κS. Yet, since membrane
viscosity is a damping term akin to the already included
fluid viscosity, we do not expect our results to change sig-
nificantly if it were to be included. As we shall see below,
the anomalous diffusion on which we focus in the present
paper comes from the membrane elasticity providing a
memory to the system.

With the Skalak and Helfrich models it follows that the
linearized tangential and normal fluid stress jumps across
the interface are related to the membrane displacement
field at zm by51

[σzα] = −κS

3
(
∆‖uα + (1 + 2C)e,α

)
, α ∈ {x, y} ,

(9a)
[σzz] = κB∆2

‖uz , (9b)

where [g] = g(z+
m) − g(z−m) denotes the jump of a quan-

tity g across the membrane located at zm. Furthermore,
C := κA/κS is the ratio of the area expansion to shear
modulus, ∆‖ = ∂,xx + ∂,yy is the Laplace-Beltrami op-
erator along the membrane and e = ux,x + uy,y is the
dilatation. A comma in indices denotes derivatives. The
components σzα of the stress tensor are expressed by

σzα = −p δzα + η(vz,α + vα,z) , α ∈ {x, y, z} . (10)

The Stokes equations can conveniently be solved using
a two-dimensional Fourier transform technique36,45,51.
Moreover, the dependence of the membrane shape on the
motion history suggests a temporal Fourier mode anal-
ysis. Here we use the common convention of a negative
exponent in the forward Fourier transforms. As both
spacial as well as temporal transformations will be per-
formed, we shall reserve the tilde for the spatially trans-
formed functions while the function and its temporal
Fourier transform will be distinguished uniquely by their
arguments.

Continuing, it is convenient to adopt the orthogonal co-
ordinate system in which the Fourier transformed vectors

are decomposed into longitudinal, transverse and normal
components36,51,70, denoted by ṽl, ṽt and ṽz, respectively.
For some given vectorial quantity Q̃, the passage from the
new orthogonal basis to the usual Cartesian basis can be
performed via the orthogonal transformation(

Q̃x
Q̃y

)
= 1
q

(
qx qy
qy −qx

)(
Q̃l
Q̃t

)
, (11)

where qx and the qy are the components of the wavevector
q and q := |q|. Note that the component Q̃z along the
direction normal to the membranes is left unchanged.
After applying these transformations to Eqs. (6) and

(7), we can eliminate the pressure and obtain two decou-
pled ordinary differential equations for ṽt and ṽz, such
that36,51

q2ṽt − ṽt,zz = Ft
η
δ(z − z0) , (12a)

ṽz,zzzz − 2q2ṽz,zz + q4ṽz = q2Fz
η

δ(z − z0)

+ iqFl
η
δ′(z − z0) , (12b)

where δ′ stands for the derivative of the Dirac delta
function. The incompressibility equation (7) allows for
the determination of ṽl from ṽz such that

ṽl = iṽz,z
q

. (13)

For the sake of amenable mathematical equations, we
will only consider the case that the two membranes have
the same elastic and bending properties. Indeed, this
is usually encountered in blood vessels where the RBCs
posses similar physical properties. After some algebra it
can be shown that the stress jump due to shear and area
expansion from Eq. (9a) imposes the following disconti-
nuities at zm

51:

[ṽt,z] = −iBαq2ṽt
∣∣
z=zm

, (14a)

[ṽz,zz] = −4iαq2ṽz,z
∣∣
z=zm

, (14b)

where α := κS/(3Bηω) with B := 2/(1 + C) is a charac-
teristic length for shear and area expansion. The normal
stress jump given by Eq. (9b) leads to

[ṽz,zzz] = 4iα3
Bq

6ṽz
∣∣
z=zm

, (15)

where αB := (κB/(4ηω))1/3 is a characteristic length for
bending.

D. Solutions

The basic approach for solving such a system of equa-
tions (12) and (13) to obtain the particle mobility was
detailed in an earlier work51. Here we only outline the
major differences and steps.
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Since the system is isotropic with respect to the x and
y directions the mobility tensor only contains diagonal
components. The normal-normal component G̃zz can be
obtained from solving Eq. (12b) in which only the nor-
mal force Fz is considered, i.e. Fl = 0. By applying the
appropriate boundary conditions at zm and z0, the inte-
gration constants are readily determined. At z = zm, the
normal velocity ṽz and its first derivative are continuous
whereas the second and third derivatives are discontin-
uous because of shearing and bending, as prescribed in
Eqs. (14b) and (15) respectively. At the point force po-
sition, i.e. at z = z0, the normal velocity and its first and
second derivatives are continuous while the Dirac delta
function imposes the discontinuity of the third derivative
(see Eq. (12b)).

For the motion parallel to the membranes, it is suf-
ficient to consider a force Fx and solve for the Green’s
function component G̃xx. The latter can be expressed by
employing Eq. (11) via

G̃xx(q, φ, ω) = G̃tt(q, ω) sin2 φ+ G̃ll(q, ω) cos2 φ , (16)

where φ := arctan(qy/qx). Accordingly, the determina-
tion of G̃xx requires two steps. First, the transverse-
transverse component G̃tt is determined from solving
Eq. (12a). The transverse velocity ṽt is continuous at the
membranes whereas shearing imposes the discontinuity of
the first derivative as prescribed by Eq. (14a). At z = z0,
the transverse velocity is continuous while its first deriva-
tive is discontinuous because of the Dirac delta function
(see Eq. (12a)). Second, the normal velocity component
ṽz is determined as an intermediate step from solving
first Eq. (12b) by only considering the longitudinal force
Fl, i.e. Fz = 0. In this situation, the Dirac delta func-
tion imposes the discontinuity of the second derivative

at z0 whereas the third derivative is continuous. After-
ward, the velocity component ṽl is immediately recovered
thanks to the incompressibility equation (13), giving ac-
cess to the longitudinal-longitudinal component G̃ll.
What remains for the determination of the particle mo-

bility is to apply the spatial inverse Fourier transform by
integrating over φ and the wavenumber q. In the point
particle approximation, the mobility correction can read-
ily be calculated by subtracting the bulk term and taking
the limit when r tends to r0, as described by Eq. (3).
For convenience, we define the subscripts ⊥ and ‖ to

denote the tensorial components zz and xx, respectively.
The yy component of the mobility tensor is identical to
the xx component. Moreover, we define kσ⊥(β, βB) and
kσ‖ (β, βB), two frequency dependent complex quantities
which are related to the first order correction in the mo-
bility via

∆µα(z0, ω)
µ0

= −kσα(β, βB) a
z0
, α ∈ {⊥, ‖} , (17)

where β := 2z0/α ∼ ω and βB := 2z0/αB ∼ ω1/3 are
two dimensionless frequencies related to the shear and
bending effects, respectively. Analytical expressions for
kσα(β, βB) can be obtained with computer algebra soft-
ware, but they are not listed here due to their complex-
ity and lengthiness.71 These expressions are the basis for
the computation of the Brownian motion and therefore
constitute one of the central results of our work.
We proceed to investigate the limiting case of Eq. (17)

in which both shearing and bending modulus tend to
infinity and therefore β and βB both tend to zero. In this
case, which physically represents a hard wall, the general
expression for kσα as it appears in Eq. (17) reduces to

kσ⊥(0, 0) =
∫ ∞

0

3
4Γ

(
φ1

+e
2σu − φ1

−e
−2σu + φσ+e

2u − φσ−e−2u + e−2(1+σ)u − ψ+

)
du , (18a)

kσ‖ (0, 0) =
∫ ∞

0

(
3

8Γ

(
φ1
−e

2σu − φ1
+e
−2σu + φσ−e

2u − φσ+e−2u + e−2(1+σ)u − ψ−
)
− 3

4
e2u + e2σu − 2
e2(1+σ)u − 1

)
du , (18b)

where we defined

φσ± := σu(σu± 1) + 1
2 , (19a)

ψ± := 1 + 2(1 + σ)2u2 ± 2(1 + σ)(1 + 2σu2)u , (19b)
Γ := 1 + 2(1 + σ)2u2 − cosh (2(1 + σ)u) . (19c)

Expressions (18) are valid for arbitrary positions of the
upper wall given by (1 + σ)z0. For specific values of σ
we recover three results obtained earlier: First, the single
hard wall limits k∞⊥ (0, 0) = 9/8 and k∞‖ (0, 0) = 9/169,34
are obtained for σ → ∞. Second, the two wall case for
σ = 1 and σ = 3 lead to the first order correction terms

for the parallel motion as computed by Faxén55, namely
k1
‖(0, 0) ≈ 1.0041 and k3

‖(0, 0) ≈ 0.6526. Third, we find
the result by Felderhof59 for the perpendicular motion,
k1
⊥(0, 0) ≈ 1.4516.

E. Coupling of shear and bending contributions

In this subsection we address one particular aspect of
the boundary conditions for the two membranes. In our
recent work51 we found that the particle mobility near a
single elastic membrane could be expressed as the linear
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combination of the two independent shear and bending
contributions. For the two membrane case as discussed
in the present work, however, the solution of Eq. (12b)
requires to simultaneously consider the boundary condi-
tions stated by Eqs. (14b) and (15). This is a qualitative
difference compared to the one membrane case.

To see this, consider two different setups, one with only
bending resistance (α = 0) and one with only shear re-
sistance (αB = 0). Furthermore, let the corresponding
perpendicular velocities be denoted by ṽB

z and ṽS
z , re-

spectively. If the expression ṽS
z + ṽB

z − ṽbulk
z should be

the solution of two membranes with shear and bending
resistance, it would have to fulfill the boundary condi-
tions (14b) and (15). This is true if and only if

ṽB
z,z

∣∣
z=zm

= 0 and ṽS
z

∣∣
z=zm

= 0 , (20)

which is in general satisfied only in the one membrane
limit. As a result, the contributions from shearing and
bending cannot be added independently on top of each
other in the resulting mobility corrections, defined by
Eq. (17).

F. Computation of membrane deformations

A force acting on a particle will induce a motion in
the fluid. As a result, the imbalance in the stress tensor
across the membranes leads to their deformation. In this
subsection we compute the deformation resulting from
a time dependent point force located at z0, whereas the
force is oriented perpendicularly or parallel to the mem-
branes. Once the fluid velocity field is computed in the
whole domain, the displacement field for each membrane
can be obtained via Eq. (8). For each membrane we
define a frequency and wavevector dependent reaction
tensor ψ̃αβ as

ũα(q, ω) = ψ̃αβ(q, ω)Fβ(ω) . (21)

For the perpendicular motion, the radial symmetry
suggests that the displacement vector will have a normal
component uz and a radial component ur. By performing
the spatial inverse Fourier transform for a radially sym-
metric function72, we immediately get the normal-normal
component of the reaction tensor in real-space:

ψzz(ρ, ω) = 1
2π

∫ ∞
0

ψ̃zz(q, ω) J0(ρq) q dq , (22)

where ρ :=
√
x2 + y2 and J0 is the zeroth-order Bessel

function.
To compute the radial-normal component, we first

note that from the transformation equations (11) ψ̃xz =
ψ̃lz cosφ since ψ̃tz = 0 in virtue of the decoupled nature
of Eqs. (12a) and (12b). Thus, the spatial inverse Fourier
transform applied to the non-radially symmetric function
ψ̃xz(q, φ, ω) leads to

ψrz(ρ, ω) = i

2π

∫ ∞
0

ψ̃lz(q, ω) J1(ρq) q dq , (23)

using the fact that ψxz = ψrz cos θ and ψyz = ψrz sin θ
where θ := arctan(y/x).
Let us consider next the deformation due to a time de-

pendent point force parallel to the membranes. Due to
the symmetry it suffices to consider a force applied along
the x-direction. Furthermore, this force can be decom-
posed into a longitudinal component Fl = Fx cosφ and
a transverse component Ft = Fx sinφ. For the normal-
tangential component ψzx, it follows from the transfor-
mation equations (11) that ψ̃zx = ψ̃zl cosφ since ψ̃zt = 0
for the same reason as ψ̃tz. Therefore, the inverse Fourier
transform back into real space gives

ψzx(ρ, θ, ω) = i cos θ
2π

∫ ∞
0

ψ̃zl(q, ω) J1(ρq) q dq , (24)

meaning that the vertical deformation is maximal in the
plane y = 0 containing the support of the vector force,
and vanishes in the plane x = 0 perpendicular to it.
To compute the lateral stretching of the membrane due

to a parallel force on the particle, we require the com-
ponents ψxx and ψyx giving access to the two in-plane
displacements ux and uy, respectively. It follows immedi-
ately from applying the transformation equations (11) to-
gether with the definition of the reaction tensor Eq. (21)
that

ψ̃xx(q, φ, ω) = ψ̃ll(q, ω) cos2 φ+ ψ̃tt(q, ω) sin2 φ , (25)

leading after spatial inverse Fourier transform to

ψxx(ρ, θ, ω) = 1
4π

∫ ∞
0

((
ψ̃ll(q, ω) + ψ̃tt(q, ω)

)
J0(ρq)

+
(
ψ̃tt(q, ω)− ψ̃ll(q, ω)

)
J2(ρq) cos 2θ

)
q dq .

(26)

Similar, for ψyx we have

ψ̃yx(q, φ, ω) =
(
ψ̃ll(q, ω)− ψ̃tt(q, ω)

)
cosφ sinφ , (27)

whose inverse Fourier transform is

ψyx(ρ, θ, ω) = sin 2θ
4π

×
∫ ∞

0

(
ψ̃tt(q, ω)− ψ̃ll(q, ω)

)
J2(ρq) q dq .

(28)

Although not transparent from Eq. (26), the deforma-
tion in the x-direction is maximal in the plane y = 0
and minimal in the plane x = 0. On the other hand, de-
formation is maximal for the y-direction in the bisector
planes y = ±x, and vanishes in the planes x = 0 and
y = 0. Under the action of an arbitrary time dependent
point force F (t), the membrane deformation can sub-
sequently be obtained by applying the temporal inverse
Fourier transform.
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III. SIMULATIONS

A. Boundary Integral Method

For the simulations we use the boundary integral
method (BIM)73 whose foundation is the steady Stokes
equations. The core idea is to write them as an integral
equation, made possible by the fact that we deal with a
linear equation. However, treating rigid objects in the di-
rect formulation is difficult and inefficient since it would
lead to a Fredholm equation of the first kind. Instead, we
employ an extension called the completed double layer
boundary integral equation method (CDLBIEM)74,75.
For the system with the two membranes the equations
read

vj(x) = Hj(x) , x ∈ Sm ,

(29a)

1
2φj(x) +

6∑
i=1

ϕ
(i)
j (x) 〈ϕ(i),φ〉 = Hj(x) , x ∈ Sp .

(29b)

Here, Sm := Sm1 ∪ Sm2 where Sm1 and Sm2 are the sur-
faces of the two elastic membranes, and Sp is the surface
of the rigid particle of radius a. The two membranes have
a square shape with a length of 300a. v represents the
velocity on the membranes while φ denotes the so-called
double layer density function on Sp. The latter is an
unphysical auxiliary field. However, the corresponding
physical velocity can be retrieved via

Vj(x) =
6∑
i=1

ϕ
(i)
j (x) 〈ϕ(i),φ〉 , x ∈ Sp . (30)

where the ϕ(i) are known functions representing the six
possible rigid body movements of the solid particle74.
The brackets denote the inner product in the vector space
of real functions whose domain is Sp. Continuing, the
function Hj with j = 1, 2, 3 is given by

Hj(x) := −(Nm∆f)j(x)− (Kpφ)j(x) + G(0)
jk (x,xc)Fk ,

(31)
with xc being the particle centroid. We defined the single
layer integral via

(Nm∆f)j(x) :=
∫
Sm

∆fi(y)G(0)
ij (y,x) dS(y) (32)

where integration over both membrane surfaces Sm :=
Sm1 ∪ Sm2 needs to be performed. The double layer in-
tegral is

(Kpφ)j(x) :=
∮
Sp

φi(y)T (0)
ijk (y,x)nk(y) dS(y) . (33)

The remaining quantities are the jump of the traction ∆f
across the membranes, the known force F acting on the

rigid particle, the outer normal vector n, the free-space
Stokeslet as defined in Eq. (5), and the corresponding
Stresslet

T (0)
ijk (y,x) := − 3

4π
sisjsk
s5 , (34)

with s := y − x and s := |s|.
Given the traction jump ∆f (computed from the cur-

rent deformation as explained in the appendix) and the
force F as input, equations (29) constitute a set of Fred-
holm integral equations of the second kind for the un-
known velocity v on the membranes and the density φ
on the rigid particle. To solve this equation numeri-
cally, we discretize all surfaces with flat triangles. For
the rigid particle, this is done by consecutively refining
an icosahedron? while gmsh76 was used for the mem-
branes: The quadratic planes were meshed with triangles,
with increasing resolution towards their center. We per-
form the integration numerically by a Gaussian quadra-
ture with seven points per triangle77 together with lin-
ear interpolation of nodal values across each triangle73.
The singularities appearing in the single layer integral are
treated via the polar integration rule78, while the singu-
larities of the double layer integral are eliminated by the
standard singularity subtraction scheme73. With this the
integral equation can be evaluated at all nodes, forming
a dense and asymmetric linear system of equations which
is then subsequently solved by GMRES79. The residuum
of the solver was fixed to 10−4. This provides us with the
velocity v at each node of the two membranes and, after
application of equation (30), also of the rigid particle.
The dynamical evolution of the system is hence obtained
by solving the kinematic condition80

dx
dt = v(x) (35)

with the explicit Euler scheme. We chose a step size that
is dependent on the wiggling frequency of the force (cf.
the next section).

B. Obtaining the mobility from BIM simulations

In order to obtain the frequency dependent particle
mobility from the BIM simulations, an oscillating force
F (t) = Aeiω0t of amplitude A and frequency ω0 is ex-
erted on the particle, in the direction perpendicular or
parallel to the membranes. After an initial transitory
evolution, the particle begins to oscillate with the same
frequency as V ei(ω0t+δ). The velocity amplitude V and
the phase shift δ can be accurately obtained by fitting
the numerically recorded velocity. For that, we use a
nonlinear least-squares solver based on the trust region
method81. The complex frequency dependent particle
mobility can then be evaluated from

µα(ω0) = Vα
Aα

eiδ . (36)
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For each applied frequency, the force is exerted during
three periods in order to ensure that the steady state
has been reached properly. Therefore, lower frequencies
require larger computation times. For instance, for β =
10−3, which is the lowest scaled frequency that we use
in our simulations, each period requires around 30 hours
using 40 CPUs.

IV. RESULTS AND DISCUSSION

A. Particle mobility

We consider a spherical particle equally distant from
both membranes (σ = 1) and located at z0 = 10a.
The membrane reduced bending modulus, defined as
EB := κB/(a2κS), is taken to be EB = 1/2. We ex-
amine the case where C = 1, for which the Skalak model
is equivalent to the common neo-Hookean model82 for
small deformations83. As shown in Fig. 2, the analyti-
cal and numerical results are in very good agreement for
the whole range of the applied frequencies, similar as in
earlier work for a single membrane51.
For a frequency of zero, the imaginary part vanishes.

On the other hand, the real part reaches its minimal value
which corresponds to the two-hard-walls limit, namely
−1.4516a/z0 and −1.0041a/z0 for the perpendicular and
parallel motions, respectively. This is in agreement with
earlier works55,59.
By taking the frequency to infinity, both the real and

imaginary parts of the particle mobility correction vanish
and one recovers the bulk behavior in which the particle
motion is no longer affected by the presence of the mem-
branes. In between, the imaginary part peaks around
β ≈ 1 and βB ≈ 1 for the perpendicular motion, and
around β ≈ 1 for the parallel motion. The peak around
β ≈ 1, which is observed in both directions, is a shear-
ing signature in the mobility correction, whereas the fre-
quency peak around βB ≈ 1 is a signature of bending.
The latter is found to be insignificant in the parallel mo-
tion. Physically, the peak frequencies correspond to the
situation where the particle-membranes system naturally
vibrates to absorb more energy.

As already remarked, a commonly used approxima-
tion to compute mobilities between two walls is Oseen’s
approach53 which assumes that the mobility corrections
can be approximated by superposing the contributions
from each membrane independently as

∆µα(z0, ω)
µ0

= −
(
k∞α (β, βB) + k∞α (σβ, σβB)

σ

)
a

z0
,

(37)
which reduces in the two-hard-wall limit to

∆µα(z0, 0)
µ0

= −k∞α (0, 0)
(

1 + 1
σ

)
a

z0
. (38)

The superposition approximation as given by Eq. (37)
for the elastic membranes is compared in Fig. 2 against
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∆
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Figure 2. (Color online) The scaled frequency dependent
correction to the particle mobility versus the dimensionless
frequencies β (lower axis) and βB (upper axis) for the per-
pendicular (a) and parallel (b) motions. Here, the particle
is equidistant from both membranes (σ = 1) and located
at z0 = 10a. The theoretical predictions from Eq. (17) are
shown as red lines (real part) and blue lines (imaginary part)
whereas the BIM simulation results are marked as rectangles
(real part) and circles (imaginary part). Dashed lines rep-
resent the superposition approximation by summing up the
contributions of each membrane independently as given by
Eq. (37). The solid horizontal lines indicate the two-hard-
wall limits (−1.4516a/z0 and −1.0041a/z0 for the perpendic-
ular and parallel motions, respectively) and the dotted hor-
izontal lines result from the superposition approximation of
the hard wall as stated in Eq. (38). For the other simulation
parameters, see main text.

our analytical predictions from Eq. (17) (see also the Sup-
porting Material) and numerical simulations in order to
assess its accuracy. For the perpendicular motion, we
observe that it only agrees well with the analytical pre-
dictions and the BIM simulations for frequencies βB > 1.
At lower frequencies substantial disagreement is observed
which, in the limit of a vanishing frequency (hard-walls),
amounts to 55 %. This deviation is due to the fact that
the superposition approximation allows the fluid to drain
away, as the no-slip boundary condition is no longer sat-
isfied at both membranes simultaneously. As expected,
it is therefore more pronounced the more the membrane
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deforms, i.e. for smaller frequencies. On the other hand,
for the motion parallel to the membranes, the agreement
is reasonable down to a dimensionless frequency β of or-
der unity. Below that, however, a significant mismatch
between the two curves is observed. In the limit for a
vanishing frequency, a relative deviation of 12 % from
Faxén’s value is obtained. All in all, the superposition
approximation consistently underestimates the particle
mobility.

B. Membrane deformation

We now consider the membrane deformation induced
by the moving particle. For this, we set the complex
driving force to be harmonic with components Fα(t) =
Aαe

iω0t, whose temporal Fourier transform is Fα(ω) =
2πAαδ(ω−ω0). In this case, the membrane displacement
is expressed as

uα(ρ, θ, t) = ψαβ(ρ, θ, ω0)Aβeiω0t . (39)

The physical displacement of the membrane is obtained
by simply taking the real part of the right hand side in
Eq. (39).

Fig. 3 depicts a comparison of the membrane displace-
ments between analytical predictions and BIM simula-
tions. Here we use the same set of parameters as in
Fig. 2. As the particle is equally distant from both mem-
branes, the displacement fields of each membrane are
equal in magnitude, but may differ in sign. For instance,
for a particle moving perpendicularly to the membranes,
the normal displacements of each membrane have the
same sign whereas the radial displacements have opposite
signs. However, the vertical displacements in the parallel
motion have different signs from each other whereas the
in-plane displacements have similar signs. Hereafter, all
the components are evaluated in their plane of maximal
displacement: uz and ux in the plane y = 0 and uy in
the plane y = x. The theoretical predictions are found to
be in good agreement with the numerical simulations for
both the perpendicular and parallel motions. The reason
behind the small discrepancy between theory and simu-
lation is most likely the fact that the analytical theory
treats truly infinite membranes whereas the correspond-
ing BIM simulations necessarily only account for finite
sized membranes.

In the perpendicular motion, the deformation is more
pronounced in the normal than in the x-direction. The
maximum displacement for the first occurs at the center.
Far away, the membrane deformation decays rapidly with
distance and vanishes as x tends to infinity. On the other
hand, radial symmetry implies that the displacement ur
should vanish at the origin, suggesting the existence of an
extremum at some intermediate radial position. The lat-
ter is found to be in magnitude around 40 times smaller
than that obtained for the normal displacement. Accord-
ingly, the in-plane deformation does not play a significant
role for the motion perpendicular to the membranes.

Considering the translational motion parallel to the
membranes, we observe that the displaced membranes
exhibit a fundamentally different shape. Not surprisingly,
it turns out that the in-plane deformation ux along the
direction parallel to the applied force is the most signif-
icant. The maximum displacements reached in uz and
uy are respectively found to be about twice and 10 times
smaller in comparison with that reached in ux.
Membrane deformability is largely determined by

shearing and bending properties. Henceforth, we shall
consider a typical case for which both effects have the
same relevance. Thus, before we can continue, we de-
fine the characteristic time scale for shearing as TS :=
6ηz0/κS and the characteristic time scale for bending as
TB := 4ηz3

0/κB
51. Both time scales are equal for a dis-

tance z0 = (3κB/(2κS))1/2. We adapt this value for the
remainder of this section. Furthermore, let τ := TS = TB.
It is also of interest to compute the maximum displace-

ment (amplitude) of the membrane during the particle
oscillation. The maximum is not necessarily reached for
tω0 = π/2, as taken in Fig. 3. In Fig. 4, we show the ef-
fect of frequency on the oscillation amplitude. Higher fre-
quencies induce smaller deformation, because the mem-
brane does not have enough time to respond to the fast
particle wiggling. By comparing the reaction tensor am-
plitudes with and without a second membrane, we see
that the presence of a second membrane reduces |ψzz|
less strongly than |ψxx|. This is similar to the observa-
tions for the MSD in the next section (see Fig. 6).
In order to examine the effect of the disposition of the

upper membrane relative to the lower one, we define the
following ratios of the reaction tensor amplitudes between
the upper and lower membranes:

R⊥ := |ψzz|upper
|ψzz|lower

and R‖ := |ψxx|upper
|ψxx|lower

. (40)

These are two quantities that vanish for σ →∞ and are
equal to one for σ = 1. In Fig. 5, we plot the variations
of R⊥ and R‖ as functions of the scaled distance from
the membrane center for different values of σ. Here the
calculations are carried out in the plane of maximal dis-
placement y = 0, for a scaled frequency of ω0τ = 0.01.
We remark that the upper membrane shows significantly
less vertical displacement as σ increases (ratio less than
unity.) Further apart from the center, where less defor-
mation occurs, the two membranes have an essentially
comparable deformation behavior, and both ratios ap-
proach the upper limit one as x increases.

C. Brownian motion

The computation of the particle mean-square dis-
placement (MSD) requires as an intermediate step the
determination of the velocity autocorrelation function
φv,α(t) := 〈Vα(0)Vα(t)〉. The latter is related to the tem-
poral inverse Fourier transform of the particle mobility
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Figure 3. (Color online) Comparison between analytical predictions (solid lines) and numerical simulations (symbols) of the
scaled membrane displacement as given by Eq. (39) for the motion perpendicular (a and b) and parallel (c, d and e) to the
membranes, for the parameters given in Fig. 2 (σ = 1). In this example, we take ω0TS = 1 and tω0 = π/2.

via Kubo’s fluctuation-dissipation theorem (FDT) such
that84

φv,α(t) = kBT

2π

∫ ∞
−∞

(
µαα(ω) + µαα(ω)

)
eiωtdω , (41)

where kB is the Boltzmann constant and T the absolute
temperature of the system. The bar denotes complex
conjugate.

The particle MSD is computed as

〈∆rα(t)2〉 = 2
∫ t

0
(t− s)φv,α(s) ds . (42)

For convenience, we define the excess MSD as

∆α(t) := 1− 〈∆rα(t)2〉
2D0t

, (43)

where D0 = µ0kBT is the bulk diffusion coefficient given
by the Einstein relation85.

We show in Fig. 6 the variations of the perpendicu-
lar and parallel excess MSDs as computed from Eq. (43)

versus the scaled time. For short times, the particle does
not yet perceive the membranes and thus experiences a
bulk diffusion. By increasing the time up to t ≈ τ , the ef-
fect of the confining membranes becomes noticeable. By
comparing the total excess MSDs for σ = ∞ and σ = 1
we find that diffusion in the long-time limit is slowed
down by a factor 1.78 for the parallel direction, but only
a factor 1.29 in the perpendicular direction, due to the
introduction of the second membrane.

As explained in Sec. II E, the particle mobility and,
consequently, also the MSD cannot be split up directly
into a shear and bending contribution for the two mem-
brane case. We therefore consider the two cases sepa-
rately, taking one membrane with α = 0 and one with
αB = 0. We find that for the shear-only membrane
(αB = 0, blue curve in Fig. 6) the time needed to reach
the steady state is about 10τ for the perpendicular mo-
tion, and about 100τ for the parallel motion. On the
other hand, the bending-only membrane (α = 0, red
curve in Fig. 6) takes for both directions a significantly
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the amplitude of the reaction tensor’s z-z component (a) and
x-x component (b) for σ = 1 (solid line) and σ = ∞ (dashed
line) with z0 = (3κB/(2κS))1/2.

longer time of about 104τ before the steady state is at-
tained.

Another way to quantify the slowing down of the parti-
cle is to investigate the time-dependent scaling exponent
of the MSD, which can be defined as

γα(t) := d ln〈∆rα(t)2〉
d ln t = 1− t

1−∆α(t)
d∆α(t)

dt . (44)

Fig. 7 shows the temporal evolution of the scaling expo-
nent which strongly depends on the distance separating
the particle from the membranes. We first remark that
the scaling exponent is γ(t) = 1 at t = 0 and for t→∞.
The particle thus experiences normal diffusion in these
cases. This is similar to the single-membrane case51. For
t ≈ τ , we observe a bending down of the scaling expo-
nent, resulting in a subdiffusive regime that extends up
to 103τ in the parallel and even further in the perpen-
dicular direction. In Fig. 8 we present the variation of
the minimal scaling exponent for σ = 1 and σ =∞ upon
varying the particle-membrane distance. For a/z0 = 0.6,
the exponent is found to be as low as 0.75 for the perpen-
dicular motion, and 0.86 for the parallel motion. These
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Figure 5. (Color online) (a) R⊥ and (b) R‖ for different values
of σ for ω0τ = 0.01 with z0 = (3κB/(2κS))1/2.

values are significantly smaller than the ones previously
found in the one-membrane limit (σ = ∞)51, where the
scaling exponent is around 0.89 and 0.92 for the perpen-
dicular and parallel motions, respectively. We therefore
conclude that the second membrane leads to a notable
slow-down of the dynamics.

V. CONCLUSIONS

We have investigated the translational motion of a
spherical particle confined between two parallel elastic
membranes and determined the frequency dependent mo-
bility for the motion perpendicular and parallel to the
membranes in the point particle limit. Contrary to the
single wall, shear and bending are intrinsically coupled
and their contributions cannot be added linearly. Our an-
alytical predictions have been compared to boundary in-
tegral simulations for a finite-sized particle and very good
agreement has been observed. The frequently used super-
position approximation, originally suggested by Oseen53
for two hard walls, has been tested for elastic membranes.
Reasonably good agreement with the analytically exact
predictions is observed for the parallel, but not for the
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main text.

perpendicular motion, especially in the low frequency
regime.

Subsequently, we have provided analytical predictions
validated by numerical simulations of the membrane de-
formation due to a particle upon which an oscillating
force is exerted perpendicular or parallel to the mem-
branes. We have observed that the deformation is most
pronounced in the direction along which the force acts,
and that the presence of the second membrane signifi-
cantly reduces the membrane deformations.

Finally, we have shown that the elastic membranes in-
duce a memory effect in the system, leading to a sub-
diffusive Brownian motion at intermediate time scales.
This is qualitatively similar, yet more pronounced, as
in the single membrane situation51. To provide typical
physical values, consider a red blood cell with a shear
modulus of κS = 5 × 10−6 N/m and a bending modulus
of κB = 2× 10−19 Nm that flows in a fluid with dynamic
viscosity η = 1.2 × 10−3 Pa s86. A typical nanoparti-
cle of radius a = 150 nm that is located at a distance
of z0 = 250 nm from both red blood cells will undergo a
long-lived subdiffusive motion that can last up to 100 ms.
The corresponding scaling exponent of the MSD can go
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Figure 7. (Color online) Variations of the scaling exponent
for the motion perpendicular (a) and parallel (b) to the mem-
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as low as 0.77 in the perpendicular and as low as 0.87 in
the parallel direction.
In the future, it will be interesting to carry out similar

calculations in more severe confinements such as cylin-
drical elastic channels where even stronger effects are ex-
pected.
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Appendix: Computation of the traction jump for the
membranes

In this appendix, we provide some technical details re-
garding the computation of the traction jump ∆f across
the membranes, as required for Eq. (31). The membranes
are endowed with shear and area elasticity together with
some bending rigidity.

1. Shear and area elasticity

We employ the Skalak model68 which is often used to
model the membranes of red blood cells. Its areal energy
density is given by87

εS = κS

12 (I2
1 + 2I1 − 2I2 + CI2

2 ) . (A.1)

The strain invariants I1 and I2 are related to the prin-
cipal in-plane stretch ratios via I1 = λ2

1 + λ2
2 − 2 and

I2 = λ2
1λ

2
2 − 1. Hence, the total energy of a membrane

Smi
is given by

ES =
∫
S

(0)
mi

εS dS0 , (A.2)

where the integration is performed over the surface in
the reference state S(0)

mi . In our case this is a simple flat
sheet. To obtain the force at each node, we assume that
the deformation is a linear function of position in each
triangle. After discretization of the integral the energy
ES depends explicitly on the node positions xi. There-
fore, according to the principle of virtual work, the total
force is then given by the gradient

F (xi) = ∂ES

∂xi
. (A.3)

This derivative can be computed analytically as detailed
in references88,89. The traction jump is thus obtained by

∆f(xi) = F (xi)
Ai

, (A.4)

whereas Ai is the area associated with node xi and is
taken as one third of the total area of the triangles con-
taining the node75.

2. Bending rigidity

The bending forces are modeled according to the
constitutive law proposed by Canham90 and Helfrich69,
which for a flat reference state becomes

EB = 2κB

∫
Smi

H2 dS . (A.5)

H denotes the mean curvature and κB the bending mod-
ulus. Applying the principle of virtual work is possible
before the discretization, leading to the following contri-
bution to the traction jump91,92:

∆f(x) = −2κB
(
2H(H2 −K) + ∆SH

)
n . (A.6)

The mean curvature H is calculated according to the re-
lation H(x) = − 1

2 (∆Sxi)ni(x). We use the algorithms
presented by Meyer et al.93 for the computation of the
Laplace-Beltrami operator ∆S and the Gaussian curva-
ture K. The normal vector n is computed according to
the “mean weighted by angle” method94. This provides
reasonable results in the application of viscous flows95.
Note that we set ∆f to zero for nodes located at the
border of the meshes.
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