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Cell membranes are vital to shield a cell’s interior from the environment. At the same time they
determine to a large extent the cell’s mechanical resistance to external forces. In recent years there
has been considerable interest in the accurate computational modeling of such membranes, driven
mainly by the amazing variety of shapes that red blood cells and model systems such as vesicles can
assume in external flows. Given that the typical height of a membrane is only a few nanometers
while the surface of the cell extends over many micrometers, physical modeling approaches mostly
consider the interface as a two-dimensional elastic continuum.
Here we review recent modeling efforts focusing on one of the computationally most intricate

components, namely the membrane’s bending resistance. We start with a short background on
the most widely used bending model due to Helfrich. While the Helfrich bending energy by itself
is an extremely simple model equation, the computation of the resulting forces is far from trivial.
At the heart of these difficulties lies the fact that the forces involve second order derivatives of
the local surface curvature which by itself is the second derivative of the membrane geometry. We
systematically derive and compare the different routes to obtain bending forces from the Helfrich
energy, namely the variational approach and the thin-shell theory. While both routes lead to
mathematically identical expressions, so-called linear bending models are shown to reproduce only
the leading order term while higher orders differ. The main part of the review contains a description
of various computational strategies which we classify into three categories: the force, the strong and
the weak formulation. We finally give some examples for the application of these strategies in actual
simulations.
Keywords: Helfrich bending, simulations, thin shell theory, variational derivative, red blood cells, vesicles,
capsules, elastic membranes, spherical harmonics, subdivision surface methods, triangulated meshes
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I. INTRODUCTION

When immersed into an external flow, even such simple
soft objects as vesicles or red blood cells (RBCs) deform
into an amazing variety of dynamically moving shapes in-
cluding slippers, parachutes or tumbling discocytes [1–5].
These arise from the complex interplay between the exter-
nal and internal flow and the mechanical stiffness of the
membrane. In the case of red blood cells the membrane
consists of four components [6, 7]: shear resistance due to
the network of cross-linked spectrin proteins (cytoskele-
ton) and bending rigidity as well as area inextensibility
and surface viscosity due to the lipid bilayer. Omitting the
lipid bilayer leads to objects which have no or very little
bending resistance and which are commonly denoted as
capsules [5]. Removal of the spectrin network eliminates
shear resistance leading to what is called a vesicle [4]. For
theoretical or computational modeling, membranes are
typically considered as two-dimensional elastic sheets and
their physical complexity is lumped into effective moduli
for shear resistance, bending rigidity, area dilatation and
sometimes surface viscosity [2, 8].

The study of soft object dynamics in flows is a serious
challenge. Being deprived of a minimum energy principle
in this non-equilibrium situation, the analytical predic-
tion of cell and vesicle dynamics represents a formidable
task. Experimentally, a full appreciation of the dynam-
ics would require three-dimensional recordings combined
with time-resolved tracking of the membrane while usually
one is restricted to two-dimensional microscopic imaging.
Although considerable progress has been achieved to over-
come these theoretical [2, 9] and experimental [10–14]
difficulties, in many situations one currently depends on
numerical simulations to gain further insight into the phys-
ical phenomena and mechanisms governing the objects’
behavior in external flows. An accordingly large interest
exists in the development and validation of accurate and
efficient numerical techniques [1, 8, 15–20].

In this review, we focus on one specific aspect of these
numerical simulations, namely the bending forces originat-
ing from the lipid bilayer. Bending forces are important
for the accurate modeling of vesicles, red blood cells and
sometimes even capsules [1, 4, 5]. The typical starting
point for their computation is an energy functional that
provides the bending energy density for a given mem-
brane geometry. In its most simple and, at the same
time, most commonly used form the local bending energy
density is proportional to the square of the local surface
curvature. Variants of this form have been postulated
by Canham [21], Helfrich [22] and Evans [23] in the early
1970s, but can also be derived from classical elasticity or
by taking the continuum limit of models that explicitly
consider the interaction between individual lipid molecules.
In the mathematics community the bending functional is

known under the term “Willmore surface/energy” [24–26].
Our goal is to summarize the origins of this energy, to

outline different derivations of the ensuing bending forces
and finally to give an account of available numerical algo-
rithms together with an overview of recent applications.
A detailed assessment of the quality of a variety of meth-
ods can be found in two recent papers [27, 28]. We do
not cover other aspects such as shear elasticity or flow
solvers. For these we refer the reader to recent reviews
[8, 15, 17, 19] and books [16, 29]. Other related reviews
[2, 4, 5, 18, 30] also include experimental observations.
Collective behavior of many soft objects with a focus on
blood flow is reviewed in references [20, 31–33].

The organization of the paper is as follows. In section
IIA we introduce the physical motivation of the Helfrich
bending energy and outline how to derive the bending
forces via a variational derivative as well as thin shell
theory. The latter is given in detail in appendix A, which
allows us to draw a connection to so-called “linear bend-
ing models”. In sections II B and IIC we briefly touch
upon the still open question of the spontaneous curvature
and introduce some experimental techniques to measure
the bending modulus. Section IIIA discusses various
possibilities to represent the membrane shape in a dis-
cretized fashion for use in computer algorithms. Based
on these, section III B focuses on a classification of differ-
ent computational methods according to their conceptual
similarities and differences. In section IIIC we briefly
summarize results of a recent comparison regarding the
quality of different algorithms [27] and extend the compar-
ison to the important case of spherical harmonics, with
details provided in appendix B. Finally, in section IV we
describe some recent applications of the computational
algorithms.

II. PHYSICAL MODEL OF MEMBRANE
BENDING

A. The Helfrich model

1. Bending energy

Vesicle walls and red blood cell membranes contain a
lipid bilayer which leads to the membrane’s resistance
against bending as well as its rather strict area inexten-
sibility [4, 6, 7]. The bilayer consists of two neighboring
sheets of elongated lipid molecules whose axes are oriented
perpendicular to the membrane surface. Their hydrophilic
heads point outwards towards the aqueous surrounding
while the hydrophobic tails are buried in the membrane
interior. Different forms of the bending energy have been
proposed in the past, with the common denominator that
they all depend on the square of the mean curvature [21–
24]. One of the most popular models for the energy per
unit deformed area εB dates back to Helfrich [22], who
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introduced it as

εB(x) = 2κB (H −H0)
2

+ κKK , x ∈ S . (1)

This constitutive law has later been called the sponta-
neous curvature model [34], also compare section II B. All
appearing quantities might in principle depend on x. The
total bending energy stored in the infinitesimally thin
interface S is then

EB =

∫
S

2κB (H −H0)
2

dS +

∫
S

κKKdS . (2)

Here, κB is the usually constant bending modulus (having
unit of energy) and H(x) is the local mean curvature
which is defined by

H(x) =
1

2
(κ1 + κ2) , x ∈ S , (3)

i.e. the average of the principal curvatures κ1 and κ2
[35, 36]. Note that the sign of H can be defined such that
it is either positive or negative for a sphere. We adopt
the convention that H shall be positive for a sphere. An
alternative but equivalent expression is given by [37]

H(x) =
1

2

3∑
i=1

(∆Sxi)ni(x) , x ∈ S , (4)

where n is the outer normalized normal vector and ∆S

is the so-called Laplace-Beltrami operator [36, eq. (33)].
This form reveals more clearly that the bending energy
already involves a second order derivative of the surface.
This can be contrasted with the surface tension of a liquid-
liquid interface whose energy involves only the area itself.
The Gaussian curvature is K(x) = κ1κ2 and its asso-

ciated Gaussian (or saddle splay) modulus is κK. Both
moduli κB and κK are often similar in magnitude [36].
However, the Gauss-Bonnet theorem [36, eq. (70)] states
that the integral of K over a closed (but not an open
[36, 38–42]) surface is a topological invariant, i.e. it is a
constant as long as the topology for a closed object does
not change. Hence, it can often be discarded from the
very beginning. H0 is the spontaneous curvature which
will be discussed further in section II B below. We point
the reader to reference [36] for an excellent overview of the
required math and the Helfrich Hamiltonian in general.

Equation (1) can be obtained via three different routes.
In the original work [22] the form of the energy func-
tional (1) has been phenomenologically proposed. It can
also be justified by the observation that the energy density
for fluid membranes can only depend on the local area
stretch and the mean and Gaussian curvatures. Taylor
expansion to second order then leads to an expression of
the form (1) [36, 43, 44]. In light of this it is somewhat
surprising that it remains valid even when 1/H is of the
same order of magnitude as the bilayer thickness [45].

Secondly, eq. (1) can also be derived from a continuum

mechanics perspective.1 Here, one starts by considering
the membrane as a three-dimensional isotropic and lin-
ear (i.e. Hookean) elastic material. In the limit of thin
and inextensible shells, a careful derivation of the elas-
tic stresses and the resulting elastic energy for a given
deformation then leads to an expression equivalent to
the first and most important term in eq. (1) (compare
[44, eq. (24)] [46, eq. (1.132)] [35, eq. (4.52)] [48, eq. (7)]).
The bending modulus κB can then be calculated explicitly
as a function of the membrane thickness h and the elas-
tic parameters (e.g. Young’s modulus E) of the material
[5, 36, 44, 48]. Given the complex molecular structure of
RBCs [6], the assumption of isotropic and homogeneous
elastic properties of the lipid bilayer may however be
called into question for cells and an empirical approach
to the value of κB might be a better choice.
In the third method, the form of eq. (1) is derived

from microscopic models that consider individual lipid
molecules. Assuming an interaction potential between the
molecules and taking the limit of an infinite amount of
molecules, one arrives at eq. (1) [49, 50]. Molecular scale
models can be combined with the continuum mechanics
approach given in the previous paragraph by assuming
spatial variability of the elastic parameters [51] which to
lowest order again leads to equation (1).

2. Bending forces

The term “bending force” in the present context needs to
be understood in the following way: Consider a deformed
membrane S whose shape is known. The deformation
results in forces fB(x) driving the interface back to equi-
librium. At the same time, flows on the outside and inside
of the membrane result in tractions (forces per unit area),
whose difference across the surface provides a traction
jump 4fB(x). Assuming negligible membrane inertia,
the internal membrane bending forces must be in local
equilibrium with the external fluid traction jump at each
point in time, implying [5, 35, 52]

4fB(x) = −fB(x) , x ∈ S . (5)

The goal now is to compute the bending forces fB or
equivalently the traction jump 4fB from the current
deformation if the energy stored in the surface is given by
equation (2). Analytically, this goal is commonly achieved
by one of two possibilities.
a. Variational formulation In the first approach one

performs a variational derivative of eq. (2) while applying
some external force such that the membrane is in equi-
librium. Consider arbitrary infinitesimal and virtual dis-
placements δx (but which adhere to possible constraints)

1 Note that in engineering solid mechanics the term “membrane
theory” actually refers to thin shells without bending resistance
[46, 47].
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of the vector x that maps the deformed surface. The
virtual work performed by the forces when some mem-
brane point is displaced is thus given by 4fB ·δx, and for
the whole membrane by δWext :=

∫
S
4fB(x) · δxdS(x).

Hence, the membrane is in equilibrium for [53–57]

δE := δEB − δWext

= δEB −
∫
S

4fB(x) · δx dS(x)
!
= 0 .

(6)

Explicitly evaluating δEB from eq. (2) for variations in
the normal direction and evoking the arbitrariness of δx
eventually leads to the Euler-Lagrange equation [24, 36,
41, 57–66]

4fB = −2κB[∆S (H −H0)

+ 2 (H −H0)
(
H2 −K +H0H

)
]n .

(7)

H0, H, K and n may depend on the position x ∈ S. κB
and κK, on the other hand, are assumed to be constant. If
they were not, an additional tangential term would arise
[67]. Note that for constant moduli without additional
constraints and for closed objects tangential variations
only represent a reparameterization of the surface and
provide no further information [61], i.e. the traction jump
consists of only the above normal component.

Equation (7) and variations thereof can be used to de-
termine the equilibrium shapes of vesicles for 4fB = 0
[17, 21, 34, 58, 68–70]. In the context of hydrodynamic
simulations, the reverse problem is considered and the
traction jump 4fB is determined from the instanta-
neous deformation. 4fB is exerted by the fluid on
the membrane and is the central quantity which cou-
ples the solid and the fluid mechanics part of the problem
[35, 71, 72]. Explicit expressions for the stress tensor
also exist (eq. (A43) in the appendix), representing a first
integral of equation (7) [2, 36, 57, 61, 65, 70, 73].

Note that the Euler-Lagrange equation (7) also remains
valid if the surface is not closed: The first normal variation
of the second term in eq. (2) that contains the (constant)
saddle splay modulus κK still drops out [36, 38, 41]. Yet,
contrary to the case of closed objects without constraints,
demanding that the first tangential variation of E vanishes
now provides additional information, namely boundary
conditions for the shape at the borders that actually do
depend on κK [38–40, 74]. I.e. although equation (7)
remains valid in the interior of the surface, additional
conditions arise at the borders that determine the possible
shapes in agreement with recent experiments on vesicles
[42].
b. Shell formulation The second approach to derive

eq. (7) uses thin shell theory [35, 70, 75–78]. Tension
tensor and bending moments can be obtained by com-
puting appropriate derivatives of the energy density with
respect to the metric and curvature tensors, respectively.
Balancing these by the externally imposed traction jump
4fB invokes first a local torque and subsequently a local
force balance. Yet, in the end eq. (7) is obtained [76,
eq. (6.19)]. We explicitly perform this calculation and
show the equivalence of the two approaches in appendix A.

c. Linear bending models Sometimes one directly
starts with a constitutive linear model [70, 79–82] for
the bending moments Mαβ on S, such as

Mαβ = −2κB(H −H0)aαβ , α, β = 1, 2 , (8)

where aαβ is the metric tensor (the coefficients of the first
fundamental form) and Greek indices denote curvilinear
components. This ansatz leads to equation (7) only if
additional contributions to the tension tensor are appro-
priately accounted for. However, deviant forms of eq. (8)
(often involving the curvature tensor [54, 80, 81, 83–86])
and/or neglecting the tension tensor contributions are
commonly used and usually yield only the leading order
term (∆SH) from equation (7) when considering small
deviations from a plane as shown in appendix A 5. Higher
orders may differ [48, 58, 79]. Since the relations between
these various approaches are not clearly established in
the present literature, we derive and compare the traction
jumps for these models in some detail in appendix A 5.
d. Constraints Many derivations of eq. (7) enforce

additional constraints, such as constant volume (for closed
particles) or conserved surface area which mimic the bal-
ance of osmotic pressure and the large area dilatation
modulus, respectively, of vesicles [4, 34] and red blood
cells [1, 6, 87]. These lead to additional terms containing
Lagrange multipliers that are added to E and also modify
the Euler-Lagrange equation. For the volume conserva-
tion, E is complemented by4p V , where V is the particle’s
volume and the Lagrange multiplier 4p represents a pres-
sure difference [39, 41, 59–61, 64]. Equation (7) receives
an additional 4pn.
Furthermore, two possibilities exist to enforce a con-

stant surface area: either a local or a total area constraint.
The total surface area constraint is implemented by adding
σ
∫
S

dS to E , with the Lagrange multiplier σ being a con-
stant effective tension [36, 38, 39, 59, 60, 64, 88]. This
leads to the supplement 2σHn in equation (7).

The local surface area constraint, on the other hand, is
enforced by adding

∫
σ̃(x)dS to E , where the Lagrange

multiplier σ̃(x) is a non-constant effective tension [2, 13,
52, 55, 58, 61, 88–99]. A tangential first variation of
the total energy E then leads to an equation involving
σ̃, whereas the normal first variation gives the Euler-
Lagrange equation. Combining both effectively means
to amend eq. (7) with the term 2σ̃Hn−∇Sσ̃, where ∇S

denotes the surface gradient [52, eq. (60)]. We explicitly
derive this term in section A6. Now, if one solves the
Euler-Lagrange equation for the shape, σ̃ is fixed by the
tangential equation. Since we prescribe the surface and
solve for 4fB, σ̃ is determined from the incompressibility
of the lipid bilayer fluid flow, ∇S · u = 0 [52]. This is
equivalent to stipulating that the area of a small surface
patch should remain constant [100, ch. 1.7.2]. We also
note that σ̃ must be necessarily constant for closed objects
without external forces, meaning that both the local and
global models often predict the same equilibrium behavior
[41, 55].
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Directly solving for the Lagrange multipliers is possi-
ble [52, 77, 88, 92, 101–103]. For simplicity, constraints
are also often implemented approximately using penalty
methods. For example, one may introduce appropriate
ad-hoc potential energies to penalize deviations from the
desired values [55, 72, 93, 104–107]. In the case of area
inextensibility it is also possible to use suitable in-plane
elasticity models (such as the Skalak constitutive law
[108]) to replace [94, 109] or supplement [72, 110] other
area constraints.
e. Membrane inertia Equation (5) implies that the

fluid and the membrane are always in local equilibrium.
This means that the inertia of the membrane itself is ne-
glected (otherwise an additional acceleration term would
appear [78, 111, 112]). This is common even for those
methods where the fluid inertia is included such as Lattice-
Boltzmann [72, 113]. Thus, the motion of the membrane
is determined by the no-slip condition, i.e. the local mem-
brane velocity is taken equal to the local fluid velocity.

An alternative approach is to endow the membrane it-
self with a mass and to obtain its motion by integration of
Newton’s third law (force formulation, see III B 2) which
is common practice in particle methods such as multipar-
ticle collision dynamics (MPCD) [114–116] or (smoothed)
dissipative particle dynamics [18, 117–126].
f. Finite thickness and other models Some simula-

tions incorporate a membrane with a finite thickness. This
effectively means to drop some simplifying assumptions
that ultimately lead to the Helfrich model [127–133]. Ex-
plicitly taking into account the two leaflets for bilayer
membranes has also been done [134]. Finally, ad-hoc
models are sometimes used that have no (or at least no
obvious) connection to the Helfrich law [135–137].

B. Area-difference model and spontaneous
curvature

In many situations, especially for closed objects such as
cells [6] or vesicles [34], the two sheets composing the lipid
bilayer are not identical. For example, the inner layer may
possess less or different lipids than the outer one. The
minimum energy state is then no longer a flat sheet, but
a curved shape with a prescribed difference 4A0 between
the areas occupied by the two sheets. Such a situation
can be modeled by including an additional contribution
to the energy in eq. (2), leading to the area-difference
elasticity (ADE) model [34, 70, 138–140]:

EB =

∫
S

εB dS + κ4 (4A−4A0)
2
. (9)

κ4 is the area difference elastic modulus and 4A is the
instantaneous area difference expressible by the distance
h between the neutral surfaces of the lipid monolayers as
4A = 2h

∫
S
H dS [36, eq. (77)]. For κ4 → ∞ the area

difference becomes a hard constraint and the so-called
bilayer coupling model is obtained [34, 138, 141]. The
contributions of H, H0, 4A and 4A0 to the traction

jump differ from each other in general, i.e. cannot be
merged. Nevertheless, when solving for the stationary
shapes, the total set of solutions is the same when using
either H0 or κ4 or both [138, 142]. Yet, the full ADE
model has apparently not been used to study soft objects
in flows where the instantaneous shape is given as input,
with the exception of reference [143]. This might therefore
be a promising task for the future, but for the remainder
of this paper we will restrict ourselves to H0, i.e. to the
Helfrich model (1).
A slightly more complicated situation arises when

molecules other than lipids, e.g. transmembrane proteins,
are present in the bilayer. These usually extend across
both monolayers and may occupy a different area at one
end than at the other, resulting again in an area difference.
However, in contrast to a simple difference in the num-
ber of lipids, membrane proteins can often form clusters
and/or are chemically attached to other parts of the cell
membrane such as the spectrin network [6], leading to a
spatially inhomogeneous spontaneous curvature H0(x).
While it is possible to obtain experimental values for

H0 for vesicles [56, 144], there currently exist no direct
measurements of the spontaneous curvature (or area differ-
ence) of red blood cells, although the asymmetric distribu-
tion of the phospholipid types between the two leaflets of
the bilayer [6] suggests a non-zero spontaneous curvature.
Indeed, not even the stress-free shape for the in-plane
shear elasticity could be determined unambiguously so
far [145–147]. All in all, this lack of knowledge represents
a certain hindrance to accurate red blood cell simula-
tions. Different ways to overcome it have been suggested
[66, 82, 139], although a consensus has yet to be reached.
The area-difference and bilayer-coupling models have

been extensively used to compute vesicle equilibrium
shapes (see section IVA). For cells or vesicles in external
flows, the spontaneous curvature model following eq. (1) is
more popular and most (but not all) numerical algorithms
for bending forces described in the following section can
relatively easily incorporate an arbitrary H0(x). Due to
the experimental uncertainty, however, many red blood
cell simulations are conducted with H0 = 0. Yet, some
researchers [82, 109, 148] choose a constant H0 6= 0 while
others [72, 84, 85, 149] set H0(x) = HR(x) where HR(x)
is the curvature of the resting shape, i.e. the shape that
the object assumes in the absence of any external forces
or flows. For red blood cells HR(x) corresponds to the
discocyte shape (cf. fig. 2). A recent careful analysis [66]
suggested the spontaneous curvature of an oblate spheroid
as a viable alternative for red blood cells.

C. Experimental determination of bending moduli

The bending modulus κB is a simulation parameter
which needs to be determined by experiments. Various
experimental setups exist for this task (see e.g. the re-
views [144, 150–152] for vesicles and [7, 153] for red blood
cells). Each experimental setup can be modeled either
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analytically or numerically with κB as a free parameter
whose value is then adjusted until agreement between the
model and the experimental data is obtained.
In the first and most classical approach for cells, the

membrane is sucked into a micropipette while the shape is
recorded with a microscope as a function of the pressure
difference [154–157]. The deformed shape sensitively de-
pends on the elastic parameters of the cell and can be used
to determine the bending modulus κB. Besides that, the
shapes obtained by micropipette aspiration simulations
can be directly compared to experiments which serves as
a validation for the entire RBC model including, but not
limited to, the bending algorithm [158, 159].

Secondly, the bending modulus can be computed from
the wavelength of wrinkles at low flow strength as has
been done for elastic capsules [131, 160], but has also
been proposed for lipid membranes [161, 162].

Finally, the fluctuations of the cell membrane in thermal
equilibrium (e.g. [163–168]) can be used to measure the
bending modulus or to validate simulation models [105],
although some complications may arise due to active
processes in the cell membrane [169].
In principle, the above techniques can also be used to

retrieve the bending modulus from molecular dynamics
simulations. This has indeed been done for vesicles (see e.g.
[45, 152, 170–173]), but apparently no one has attempted
it so far for realistic RBCs.
The popular approach to measure elasticity constants

by the stretching of cells via tweezers [174, 175] or atomic
force microscopes [176] is unfortunately rather insensi-
tive to the bending rigidity and can consequently not be
used to obtain accurate information about that particular
component [66, fig. 6] [105]. Nevertheless, these exper-
iments have often been used to validate other parts of
computational models [66, 105, 107, 135, 177–182].
In the end, measured values for κB of healthy human

red blood cells scatter rather widely in the range of 0.2−
9× 10−19 J [8, 153, 155]. Most simulations are being
conducted with values between 2 and 4× 10−19 J.

III. NUMERICAL APPROACHES

A. Surface discretizations

As already noted in the previous sections, cells, capsules
and vesicles are typically modeled with infinitely thin sur-
faces. The finite (albeit very small) thickness is effectively
taken into account via constitutive laws, for example the
Helfrich model from equation (1). Such 2D manifolds
embedded into the 3D space are usually implemented
numerically by representing the surface with a distribu-
tion of points (nodes). Integration and differentiation
operations are then calculated via some interpolation or
approximation of the surface between these nodes. These
discretizations form the basis for the computation of bend-
ing forces and we therefore describe some commonly used
approaches in the following:

a. Flat triangles The simplest method uses linear
interpolation between 3 nodes together with an unstruc-
tured mesh, leading to a representation with flat triangles.
It is one of the most often used approaches owing to its
simplicity and versatility ([52, 71, 93, 94, 98, 107, 183]
among many others). For example, a local increase of
resolution (refinement) is easily possible and was used
in the biofluidic context e.g. in references [15, 110, 184–
186] (see ref. [187] for a recent overview of refinement
methodologies). However, since it leads to a C0 surface,
computation of higher derivatives such as curvatures even
within the elements requires the inclusion of several neigh-
bors. Moreover, the results are often sensitive to the mesh
regularity [27].

Spring network models [17, 18, 105, 135, 136, 158, 177,
188, 189] can also be classified into this category (although
one could imagine spring networks containing quadrilat-
erals and other elements in principle, in practice they
appear to be only used with triangles).2 The major dif-
ference between these models and the continuum models
emerges in the computation of in-plane elasticities [191],
where their merit lies in the simplicity of implementation.
Expressions for the bending resistance, on the other hand,
usually assume the same form as in the continuum de-
scriptions and follow the same methodologies as in the
“force formulation” (see section III B 2 below).

b. Higher order elements Quadratic interpolation be-
tween 6 nodes leads to curved triangles [54, 71, 83, 192,
193]. They have the advantage that second order prop-
erties (such as the curvatures) within an element can be
computed by direct differentiation. Nevertheless, even
first order derivatives at the nodes or element borders
remain ambiguous, requiring some averaging of the sur-
rounding values [192]. It is also possible to increase the
interpolation order by including more nodes within each
element, leading to spectral element methods with ex-
ponential convergence properties as the order increases
[194–197], although global surface smoothness is still not
automatically ensured [195].
c. Subdivision methods Subdivision surface methods

are becoming increasingly popular. They constitute a
generalization of spline based approaches. Starting from
a coarse unstructured control mesh of quadrilaterals or
flat triangles, one successively introduces new nodes and

2 Spring network models start from the basic assumption that the
cytoskeleton of red blood cells can be appropriately modeled
by not discretizing any continuum descriptions, but rather by
mimicking the spectrin proteins directly with a, possibly coarser,
triangulated mesh [158]. This idea originates from the obser-
vation that the expanded cytoskeleton forms a lattice-like net-
work [190]. The actual membrane properties are implemented
via appropriate potentials acting between the nodes, stemming
from coarse-grained molecular or from reasonable ad-hoc models
[158]. Connections of the associated potential strengths (spring
constants) with continuum properties (elastic moduli) are then
usually established by considering special cases of the mesh, such
as regular hexagonal networks [189, 191].
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elements according to certain predefined rules. A key ob-
servation is that any point on the limit surface obtained
by an infinite number of refinements can be directly eval-
uated via some closed analytical formula. This enables
easy and efficient computations of derivatives. Different
variations of this idea exist. One needs to distinguish
between interpolating (the original nodes are members
of the limit surface) and approximating schemes (the
original nodes are not necessarily located on the limit
surface). The first ones have the advantage that the limit
surface is more directly connected to the control mesh.
However, the latter have the big advantage of being C1
smooth everywhere (even C2 at regular nodes3), whereas
in the first case the curvatures are not always bounded
[198]. This makes approximating approaches the domi-
nant choice for dynamic simulations of soft objects. Two
popular schemes are the Catmull-Clark (quadrilateral
based) [199, 200] and especially the Loop (based on flat
triangles) [55, 91, 96, 102, 198, 201–205] subdivision meth-
ods. We remark again that both reduce to C1 smoothness
near irregular nodes. Hence, good mesh regularity is a
requirement for accurate derivatives [27].
d. Spectral methods Another class are spectral meth-

ods where functions are expanded using some basis func-
tions whose support extends over the whole domain (this
is not to be confused with spectral element methods
[194, 195], where the support of the individual high-order
polynomials extend only over the elements). In the present
biofluidic context, the surface itself and functions defined
on it are usually expanded using spherical harmonics
[84, 85, 92, 101, 103, 206–209]. They work best for nearly
spherical shapes and can result in spectral accuracy (i.e.
the error decays exponentially fast). Instead of spheri-
cal harmonics a simple Fourier series expansion is also
possible, albeit rarely used [210].
e. Other methodologies An (almost) completely two

times continuously differentiable surface may be con-
structed by using cubic B-Splines together with a struc-
tured mesh [211–213]. Unfortunately, for closed objects
two singular poles occur where the derivatives are not well
defined, requiring e.g. extrapolation of quantities [214] or
the usage of a second (rotated [212] or unstructured [191])
mesh. Finally, NURBS [77] and fully three-dimensional
phase field models have also been employed [215, 216].

B. Computation of bending forces

The surface discretizations described above can be com-
bined with different methods to compute the actual bend-
ing forces, which we describe in this section. For the sake
of completeness, we shortly mention in section III B 1 the
computation of bending forces in the computationally

3 Regular nodes are defined by having 4 (quadrilaterals) or 6 (tri-
angles) neighbor nodes.

much simpler case of two-dimensional and axisymmetric
geometries. In full 3D, the wealth of available methods
can be sorted into three categories: the force formulation
(sec. III B 2) starts from the energy equation (2) and yields
a force at each node. The strong formulation (sec. III B 3)
and the weak formulation (sec. III B 4) on the other hand
depart from the Euler-Lagrange equation (7) and yield a
surface force density. Approaches based on the thin-shell
formalism (including the linear bending models) are often
implemented by means of the strong formulation. All
methods have their advantages and disadvantages and
there is currently no consensus on which one is the best
for a specific application.

1. Two-dimensional and axisymmetric models

In two dimensions, the Helfrich bending energy (with
zero reference curvature) is simply EB = 1

2

∫
H2ds, where

s denotes a coordinate along the contour and the inte-
gration goes over the full perimeter of the particle. A
variational derivative leads to [89, 90, 217]

4fB = κB

(
∂2H

∂s2
+

1

2
H3

)
n (10)

in analogy to equation (7). Different equivalent expres-
sions are possible if the particle is locally inextensible
[217]. The interface can be discretized by using for ex-
ample straight lines [89, 90, 119, 218], level-set [219–223],
phase field [88, 224, 225], spline [226] or Fourier methods
[217, 227–229].
Axisymmetric algorithms start from the full 3D equa-

tions and reduce them by one dimension via the assump-
tion of rotational symmetry. Differentiation and integra-
tion on the surfaces thus reduce to 1D problems. Ap-
proximations of the interfaces employ e.g. straight lines
[230, 231], Fourier expansions [95, 232, 233], B-Splines
[134], level-set [223] or phase field models [234–236].

2. Direct application of the principle of virtual work (force
formulation)

In full 3D, the first possibility to numerically compute
the forces from the bending energy EB is to directly
discretize the integral as well as the mean curvature ap-
pearing in equation (2). Thereafter, EB depends ex-
plicitly on the node positions xi with i = 1, . . . , N , i.e.
EB = EB({xi}), where {xi} means the collection of all
N nodes. Contrary to the approaches presented in the
following sections, this effectively makes the force formu-
lation a discrete model. By the principle of virtual work,
the force (in Newton) acted upon the membrane node xi

by the fluid is given by the gradient [109, 169, 237, 238]

F (xi) =
∂EB({xi})

∂xi
, i = 1, . . . , N . (11)



8

Roughly speaking, this is a discretized version of the
variational derivative leading to equation (7) [81, p. 93].
For many surface discretizations, the gradient can be
computed analytically using the explicit expression for
the discretized bending energy [27, 72]. Guckenberger et
al. [27] named this method “force formulation” because it
yields a force (rather than a force density) at each node.

Some flow solvers, e.g. boundary integral methods, re-
quire the force per unit area (traction jump) instead of the
force. In this case, one divides by the area Ai associated
with or “occupied” by the node:

4fB(xi) ≈ F (xi)/Ai , i = 1, . . . , N . (12)

Using flat triangles, typical choices for Ai are 1/3 of the
total area of the triangles surrounding xi [86, 93, 98, 109]
or Meyer’s mixed area [27, 239]. The results presented
in reference [27] suggest that the latter gives superior
results since it leads to a perfect tiling of the surface (i.e.∑N
i=1Ai = A, where A is the total surface area).
We remark that although computationally convenient,

the force formulation as a discrete model is observed
to be more sensitive to the mesh regularity (i.e. to ele-
ment area and connectivity variances) than the continuum
approaches presented in sections III B 3 and III B 4 [81,
p. 93] [27, ch. 3.5]. For sufficiently regular meshes, how-
ever, similar results can be achieved [27, ch. 3.5]. Also
note that “pure” spring network models necessarily use
the force formulation idea as they start with a discrete
model in the first place.
Out of the various available surface discretizations de-

scribed in section III A, the force formulation has thus far
been used only with flat triangles and subdivision surface
schemes.
a. Flat triangles Depending on the surface approxi-

mation, discretizing the integral and the mean curvature
H in equation (2) within the force formulation can be
done in different ways. Here we describe the two most of-
ten used possibilities for flat triangles (termed Method A
and B in [27]).
Method A starts from an often used expression [28,

72, 105, 109, 117, 121–126, 147, 158, 169, 189, 240–251]
similar to an angle-potential:

EB = 2κ̃B
∑
〈i,j〉

[1− cos(θij − θ0ij)] . (13)

Here, the sum runs over all edges 〈i, j〉 once, θij is the an-
gle between the normal vectors of the adjacent triangles
with edge 〈i, j〉, θ0ij indicates the reference (or sponta-
neous) angle and κ̃B is an effective bending modulus.
This formula can be connected to the Helfrich model from
eq. (2) for special cases, such as a sphere approximated
by equilateral triangles and zero reference curvature. In
this case the effective and physical bending moduli are
related by [241]

κ̃B =
√

3κB . (14)

Despite being rigorously valid only for this special mesh
topology and geometry, the relation (14) is often also used
in the general case.
Method B is based on a finite difference cotangent

scheme for the Laplace-Beltrami operator (and thus also
of the mean curvature H according to equation (4)). Note
that different variants of this scheme can be found in the
literature, obtainable e.g. by evaluating a contour integral
[52, 98, 239]. Method B uses the discretization described
in reference [241]:

∆Sw(xi) ≈
∑
j(i)(cotϑij1 + cotϑij2 )(w(xi)− w(xj))

2AiV
,

i = 1, . . . , N . (15)

w is some arbitrary function on the surface S, the sum
goes over the next neighbors of node xi, AiV denotes its
Voronoi area [239], and ϑij1 and ϑij2 are the angles opposite
to the edge 〈i, j〉 in the triangles which contain nodes
xj−1 and xj+1. See figure 1 for a sketch. This scheme is

xj−1

xj

xj+1

xi

〈i, j〉ϑij
1

ϑij
2

Figure 1. The first ring of neighbors around some node xi.
The shaded region marks the Voronoi area AiV. Modified from
[27] with permission from Elsevier.

used in reference [98] as well as references [106, 252] and
subsequent publications [114, 115, 188, 253, 254].

Besides Methods A and B, many other possibilities ex-
ist such as including triangle areas as weights in eq. (13)
[243] or using some other discretizations of the mean
curvature [28, 237], also including the ones presented in
the next section III B 3 a. The underlying problem of
finding appropriate discretizations for the curvatures and
the Laplace-Beltrami operator on triangulated meshes
has attracted a lot of researchers from the mathematics
and computer science communities since it is also of high
relevance for other fields such as computer graphics or sur-
face reconstruction. See for example the recent references
[37, 239, 255–269]. Yet, one has to acknowledge that no
perfect discretization of the Laplace-Beltrami operator
can exist [260].
b. Subdivision schemes The “force formulation” is

also compatible with other surface representations. For
example, references [91, 96, 102] employed Loop’s subdi-
vision surface method and obtained the mean curvature
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within elements by means of direct differentiation. Nodal
values were computed by subsequent averaging.

3. Computation by means of the Euler-Lagrange equation
(strong formulation)

Another possibility is to evaluate the Euler-Lagrange
equation (7) or the equations from thin shell theory (cf.
appendix A) directly. This requires as the most intricate
ingredient an approximation for the Laplace-Beltrami op-
erator of the mean curvature, ∆SH, i.e. a fourth order
derivative. We note that Guckenberger et al. [27] termed
this idea “variational formulation” because it uses the
expression (7) which is obtained by variational calculus.
Since, however, this term is also often used in connection
with the finite element method (see sec. III B 4), we will
denote it here as the “strong formulation”. As in the
previous section, the implementation details of the strong
formulation depend on the underlying surface discretiza-
tion.
a. Flat triangles One basic idea is to apply the same

procedure that was used to compute the mean curvature
H via eq. (4) again to ∆SH. For example, if H was
computed with a cotangent scheme at all nodes, then
∆SH can be approximated by applying the cotangent
scheme to H itself. This is Method C in [27]. To be
more precise, the authors employed eq. (15) except that
the Voronoi area in the denominator was replaced with
Meyer’s mixed area [239] leading to a perfect tiling of the
surface and thus to superior results when compared with
Method B [27]. This approach (sometimes with slight
changes) has often been used by other researchers (e.g.
[37, 52, 66, 86, 93, 183, 255, 270–272]).

A second possibility for flat triangles is based on a kernel
of the heat equation (Method D in [27]), and essentially
consists of computing the sum of the distances between
the evaluation point and all other vertices of the mesh
weighted with an exponential decay [261]. Due to the
global support, the convergence properties were found
to be the best of all the considered methods, but at the
price of a large performance impact [27]. This is most
likely the reason why it has not been used in the biofluidic
context before. We remark that a cutoff can be applied
to increase performance, and that employing the geodesic
distance (the distance along the surface) improves results
further [269].

A third possibility uses parabolic fitting of the surface
components and of the mean curvature around the evalua-
tion point [107] (Method E in [27]). The robustness of this
algorithm can be easily tuned by including more neighbors.
Other fitting polynomials are also possible [273], with
fourth or higher order polynomials allowing for a direct
computation of ∆SH in one go. Otherwise, several succes-
sive fits are necessary. Method E was used (sometimes in
modified form) e.g. in references [37, 99, 107, 186, 272, 274–
277]. References [94, 104, 146, 148, 278–285] use a com-
bination of parabolic fitting for H and a direct discretiza-

tion of the Laplace-Beltrami operator of H in the spirit of
Method C. Moreover, as already mentioned in the force
formulation section, countless other ways to discretize the
Laplace-Beltrami operator on triangulated meshes exist
(see sec. III B 2 a and the references provided therein).

So far we have only discussed approaches to compute
the mean curvature H and its Laplace-Beltrami operator
∆SH. Yet, equation (7) also sports the Gaussian curva-
ture K as well as the normal vector n. Fortunately, since
∆SH is often the dominating term (see appendix A4d)
and they only contain second and first order derivatives,
respectively, their approximations usually introduce only
negligible errors [27]. If the parabolic fitting idea is used,
both can be computed naturally from the fitted surface
[107]. In case of the other two schemes (Methods C and D),
it is convenient and quite accurate [27] to compute K
by means of a discretized version of the Gauss-Bonnet
theorem [239], and n via the “mean weighted by angle”
algorithm [286].
b. Higher order elements Curved triangles allow the

direct computation of the curvatures and normal vectors
within the elements since all quantities are assumed to
vary quadratically inside of them. Nevertheless, discon-
tinuities arise at the nodes. As a solution, the resulting
quantities are averaged. Afterwards, assuming that they
vary quadratically, too, the final traction jump is com-
puted for example by performing one derivative explicitly
and the other by means of a contour integral [54, 83].
Spectral element methods have apparently not been used
to compute equation (7).
c. Subdivision surfaces To the best of our knowledge,

subdivision surface methods were not yet used to evaluate
the local equilibrium condition (7) directly. This probably
stems from the fact that they are mostly used together
with the finite element method (sec. III B 4) in the general
field of thin-shell analysis [198].
d. Spectral methods Here, the surface components

[84, 101, 103, 207, 208] or sometimes only the radius
[91, 92] are expanded into a spherical harmonics series.
Evaluation of eq. (7) or of the thin shell theory equa-
tions from appendix A is then in principle straightforward
since the derivatives act on the basis functions and are
well-defined everywhere [287]. We provide more details in
appendix B. However, because the mean curvature H de-
cays only slowly in the spectral space, a comparably high
number of modes must be used. This in turn often results
in prohibitively slow performance in the evaluation of the
hydrodynamics. The typical remedy is a procedure called
de-aliasing: Generally speaking, one can use a relatively
low resolution for the hydrodynamics, but upsample the
grid (via spherical harmonics interpolation) for the pur-
pose of computing the bending forces [84, 101, 103, 207].
A possible alternative might be to bypass the transfor-
mation of H and directly compute ∆SH from the surface
components, as remarked in the appendix.
Other spectral methods besides spherical harmonics

were apparently not used so far for the purpose of 3D
bending computations.
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e. Other discretizations It is also possible to employ a
level set [288] or combined level set method and essentially
non-oscillatory (ENO) reconstruction [182] to directly
evaluate equation (7). Using three-dimensional phase-
field models is another possibility [215].

4. Finite element method (weak formulation)

In the third possibility to compute the bending forces,
eq. (7) is multiplied with an arbitrary trial function (typ-
ically denoted δx) and integrated over the membrane
surface. Then the fourth order derivative of x is reduced
to a second order derivative by means of two successive
integrations by parts. These effectively move the deriva-
tives to the trial functions δx. Thus we find an integral
equation constituting the so-called weak formulation of
eq. (7) which can be solved by a finite element method
(FEM) for 4fB [55, 149, 193, 198, 204, 289]. The basic
idea here is to discretize the surface with some elements
and expand the surface x as well as the trial functions
δx in terms of a finite number of shape functions having
local support on the elements. After substituting them
into the integral equation, evoking the arbitrariness of
δx and also discretizing the integral via some numerical
quadrature, one ends up with a sparse linear system of
equations that determines 4fB [55, 131].4 Alternatively,
the value of 4fB at some node can be approximated via
the mean value theorem, dodging the explicit solution of
the linear system [133, eq. (62)] [149].
Proper convergence requires that if the integrand con-

tains an r’th derivative, then the elements must approxi-
mate the surface such that it is Cr within the elements and
Cr−1 at the element borders [289, ch. 3.6]. Hence, since
the bending energy contains a second order derivative,
the elements themselves should be C2, and C1 at their bor-
ders. This is similar to the force formulation (sec. III B 2)
which also requires only a second order derivative, but is
in stark contrast to the strong formulation (sec. III B 3)
which requires that the surface is at least C3 (otherwise
the fourth order derivative would not be well defined).
Despite having similar requirements as the force formula-
tion, so far it remains unclear whether the force or the
weak formulation performs better with respect to accu-
racy if the same surface elements are employed. Overall,
the major advantage of FEM seems to lie in its stability
[193, 290], although rigorous comparisons with the other
two alternatives are apparently missing.
Considering the differentiability requirements, subdi-

vision surface methods are often used for this approach
[55, 149, 198, 200], as for Method S in reference [27].

4 In typical engineering applications the finite element method is
applied the other way round, i.e. one usually solves for the expan-
sion coefficients of the surface x while the traction is prescribed
[193].

Splines [213, 291], NURBS [77] or mixed phase field mod-
els are also possible [216].

The C1 requirement can be bypassed by introducing the
mean curvature H as an additional independent variable
[26, 292]. Hence, the overall system to be solved for 4fB

and H consists not only of the weak form of the Euler-
Lagrange equation, but also of an additional equation
(also in weak form) for the mean curvature. This system
contains only first order derivatives and is thus amenable
to discretizations with flat triangles, resulting in a stable
scheme [26, eqs. (4.3) and (4.4)] [290, eq. (3.4f) or (4.15f)]
[143, 292–294]. An alternative is to use curved triangles
(which also form a C0 surface, as mentioned above) [295,
296].

As a side note, ref. [206] employs the weak formulation
similar to FEM, but together with spherical harmonics
(which have global support and thus the method cannot
be really classified as FEM). By choosing a particular trial
function δx, they obtain an equation with the expansion
coefficients for the traction jump on the one side, and an
expression involving the known derivatives of δx on the
other side. The traction jump in the spatial domain is
then obtained by a simple backward transformation.

C. Comparison of a selection of methods

An easy way to analyze the performance of bending algo-
rithms is to consider shapes for which analytical formulas
for the traction jumps can be derived. Guckenberger et
al. [27] studied methods originating from flat triangles
(Methods A–E and S mentioned above) for the typical
equilibrium shape of a red blood cell, see figure 2. Meth-
ods A and B use the force formulation, C –E the strong
formulation, and Method S the finite element method.
They computed the maximal and average errors of the
numerically obtained traction jump with respect to the
analytical result in all cases. The spontaneous curvature
was set to zero.

Figure 2. The typical shape of a red blood cell, as described
by equation (B14). Intersections of the grid lines indicate the
nodes used for the spherical harmonics expansion of order
16, and the color depicts the nodal errors of evaluating the
traction jump (the maximum and average is shown in figure 4).
Most other expansion orders show similar error patterns.

Their results for a certain type of mesh (called MT1 in
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[27]) is shown in figure 3 for the mean curvature H, and
in figure 4 for the traction jump 4fB. Regarding the
maximal error, none of the algorithms converge properly.
Moreover, Method D, which appears to converge at least
with a systematic error, also begins to diverge beyond
a certain resolution when the mesh topology is slightly
changed (mesh MT2 in [27], not repeated here).

For the average error, which is more relevant in Stokes
flow applications, Method D appears to show proper
convergence. Taking the MT2 mesh into account, all
other algorithms roughly converge with a systematic error,
except Method A which clearly diverges.
The authors of ref. [27] concluded that in principle

the best scheme is Method D, although it is too slow
for practical uses because it requires sufficiently high
resolutions and scales as O(N2) where N is the number of
nodes. Hence, Method S or Method E are usually better
choices. But note that the quality of the subdivision
surface method S highly depends on the mesh regularity.
See ref. [27] for more details and an in-depth discussion
together with some guidelines.

Here we additionally include results obtained using the
strong formulation with a spherical harmonics expansion
of order p as described in appendix B. Figure 2 shows
a typical error distribution for 4fB on the surface for
p = 16. The errors for the mean curvature H drop to
machine precision beyond an order p > 5, see figure 3. In
this case the RBC surface is exactly representable by a
spherical harmonics series of order 5. The mean curvature
itself, on the other hand, cannot be expressed by just a
few terms of the expansion owing to its highly nonlinear
dependency on the surface geometry. As we compute
the Laplace-Beltrami operator of H by expanding H
again into spherical harmonics, the error decay of the
traction jump in figure 4 occurs roughly exponentially
(as is typical for spectral methods). If we computed
the fourth order derivatives directly as remarked in the
appendix, we would expect a jump to machine precision
as for H. Hence we conclude that for spherical harmonics
a somewhat more practical test would consider some non-
exactly representable surface and assess its performance
there. However, the main problem is to obtain precise
reference results for such an object and we therefore leave
this task for future work.

IV. APPLICATIONS

We will now summarize some important applications
and provide an overview of the contexts in which the
individual methods are being used.

A. Membranes in the absence of an externally
imposed flow

The computation of equilibrium shapes of vesicles
and red blood cells is a problem with a long history

[17, 21, 34, 58, 68–70]. The goal is to find the minimum
of the surface’s energy under appropriate constraints. In
case of vesicles this usually means to minimize the bending
energy from eq. (2) or the extended version from eq. (9)
(which includes the area-difference) under the constraints
of constant surface area and volume. For red blood cells
additional terms are needed to take the finite shear elas-
ticities into account, although early works have neglected
them.
To this end, it would in principle be possible to use

the Euler-Lagrange equation (eq. (7) with 4fB = 0 and
appropriate amendments for the constraints) and solve
it for the unknown shape directly. However, since it con-
stitutes a 4th order nonlinear PDE, this is a formidable
numerical task and was only attempted under the as-
sumption of axisymmetry [58, 68–70, 142, 231, 297, 298].
Alternatively, the bending forces can be used to solve
a damped equation of motion where the mass and the
damping coefficients only influence the speed of conver-
gence but do not modify the final equilibrium shapes.
For example, Tsubota et al. [28, 147] used this approach
together with flat triangles. A third and the most pop-
ular possibility is to perform a direct minimization of
the energy via methods such as Monte Carlo [70, 139] or
quadratic programming [141, 299]. This has been done for
axisymmetric [223, 234] but also fully three-dimensional
shapes. Employed discretizations include for example
flat triangles (e.g. [70, 139, 243, 296, 299], and publi-
cations using Brakke’s Surface Evolver [300] such as
[301, 302]). Moreover, spherical harmonics [141, 303],
subdivision surface methods [55] or B-Splines [213] have
been used, sometimes in the framework of the finite ele-
ment method [55, 213, 216].
In the related context of membrane thermal fluctua-

tions, adequate simulations also require the inclusion of
bending resistance. For example, [140, 304, 305] used
spherical harmonics and [169] used a spring network
model. Bending must also be included when consider-
ing the diffusion of nanoparticles near realistic red blood
cells which was done in references [86, 306–309] via flat
triangles and Method C from section III B 3.
In table I we list an overview of all works simulating

isolated soft objects with or without an external flow
together with the employed bending algorithms.

B. A single object in flow

The behavior of even a single soft object such as a
vesicle, capsule or red blood cell in simple flows can be
amazingly complex [1–5, 97], even bearing the possibil-
ity for deterministic chaos [310, 311]. For vesicles the
dynamics is mostly determined by bending forces in con-
nection with area inextensibility and volume conservation.
Red blood cells are mostly dominated by shear elastic-
ity, although the maximal deformation can be notably
reduced by the bending resistance [54] and it prevents
the formation of sharp cusps [312]. For very thin-shelled



12

M
a

x
im

u
m

 o
f 
�

H

1/h

Spherical harmonics order p

(a)
C

D

E

S

SH

O(h3)

O(h2)
O(h)

O(1/h)

O(1/h2)

10-3

10-2

10-1

100

3  10  100

 1  10

A
v
e

ra
g

e
 o

f 
�

H

1/h

Spherical harmonics order p

(b)

3  10  100
10-5

10-4

10-3

10-2

10-1

100
 1  10

Figure 3. (a) Maximal and (b) average errors of the mean curvature H for the discocyte shape from figure 2. Methods C –E
and S use flat triangles with a mean edge length of h (inverse on the lower x-axis). The lines are meant as guides to the eye to
assess the typical convergence behavior. The vertical line at the top indicates results for an inhomogeneous triangulated mesh.
Data for Methods A–E and S from reference [27] (MT1 mesh). The result for the spherical harmonics method SH is shown
as a function of the truncation order p (upper x-axis, no correlation with the lower axis exists). Note that the error drops to
machine precision (≈ 10−14 for double precision arithmetic) for p > 5. Errors for the Gaussian curvature K are very similar.
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Figure 4. (a) Maximal and (b) average errors of the traction jump 4fB for the discocyte shape from figure 2. Setup and
symbols similar to figure 3. Data for Methods A –E and S from reference [27] (MT1 mesh). Errors for ∆SH look very similar.

capsules, bending forces are often assumed to be negli-
gible [5]. They only manifest in zones of negative stress
where they define the wavelength of the emerging wrinkles
[5, 72, 211, 212, 313, 314]. Recent works in this category
are also collected in table I.

Two prototypical flows are commonly used: linear shear
flows and Poiseuille flows. The former is somewhat simpler
as the incoming flow far away from the object possesses a
spatially constant shear rate while the latter is somewhat
more relevant for applications in micro- or biofluidics.
Occasionally, also time-dependent flows have been inves-
tigated [280, 315–319].

1. Linear shear flows

a. Spherical capsules The influence of bending resis-
tance has been systematically studied almost only for an
initially spherical elastic capsule endowed with additional
bending rigidity in linear shear flows. The capsule at
low shear rates deforms into an approximate ellipsoid
and performs a tank-treading motion, i.e. the membrane
rotates around the stationary shape. This is illustrated in
figure 5 (a). The system parameters can be cast into three
dimensionless values: the dimensionless shear rate (or elas-
tic capillary number) G = µγR/κS, the dimensionless ra-
tio between shear and bending resistance κ̂B = κB/(R

2κS)
and the viscosity ratio λ = µC/µ. Here, κS is the shear
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Discretization Force formulation strong formulation
(Euler-Lagrange)

weak formulation
(FEM)

Flat triangles

A [18, 27, 28, 105, 123,
147, 169, 180, 189, 243,
244, 247–249]

B [27, 98, 106, 115, 188,
252, 253]

C [27, 52, 66, 86, 93,
183, 270, 271, 279,
306–309, 320, 321]

D [27]

E [27, 99, 107, 275–
277]

C + E [94, 104, 146, 148,
278–282]

[143, 293]

Higher order elements
(curved triangles) [54, 83] [296]

Subdivision methods [91, 102] [27, 55, 149, 200,
204, 205]

Spectral methods
(spherical harmonics)

[84, 85, 91, 92, 207, 209,
322, 323] [206]*

Other methods [182, 215]

Table I. Overview of recent numerical works for a single object with or without external flow that compute the bending
forces using full 3D methodologies. We only list publications that use the Helfrich bending law or a linear bending model
(see section IIA 2b). Methods A–E have been shortly described in sec. III B and in detail in reference [27]. Note that
the discretizations only refer to the computation of the bending forces (other components of the solvers might use different
approaches). *Reference [206] uses the weak formulation but not the FEM, as explained in section III B 4.

modulus for the in-plane tensions (usually modeled by
the neo-Hookean law [5, 27]), R the initial radius, µ the
dynamic viscosity of the ambient fluid, µC the dynamic
viscosity of the internal fluid, and γ the shear rate. Note
that different conventions for the moduli exist in the lit-
erature. The reference state for the in-plane tensions is
taken to be the initial sphere and the bending reference
state is usually a flat sheet (H0 = 0).

The shape is typically described by the Taylor defor-
mation parameter D = a−c

a+c with the largest and smallest
semi axes a and c, respectively, and the inclination angle
θ between the x-axis and a. D and θ can be extracted
from an ellipsoid with the same inertia tensor [192, 238].
Without bending forces, ample data is available because
this setup is very often used for the verification of hydro-
dynamic simulation codes. There is very good agreement
across a wide range of surface discretizations and flow
solvers as shown in figure 5 (b).

Once bending forces are included, however, one observes
a surprisingly large spread of the values reported in the
literature as shown in figure 5 (c). Since all simulations are
intended to model the same physical situation, this spread
is somewhat unexpected. Given the excellent agreement
without bending forces in figure 5 (b), a decisive influence
of the flow solver is unlikely. The fact that some of
the references use a linear bending model is also most
likely not the reason as the curves in question do not
match among themselves and because the ∆SH term
(which is common to all) should dominate the behavior
(compare sec. A 5). Moreover, not even results using the

same surface discretization methodologies agree with each
other. This spread thus clearly exemplifies the difficulty of
accurately computing the bending forces. In the future, it
would be interesting to conduct similar studies including
a non-zero spontaneous curvature.
b. Non-spherical objects Vesicles typically obey strict

area and volume conservation and thus, for any defor-
mation to be possible, the initial shape must not be a
sphere. This adds an additional dimensionless parameter
called the reduced volume ν = 6

√
πV/S3/2 6 1 [325],

where ν = 1 corresponds to a sphere. Owing to the excess
area, additional phenomena such as vacillating-breathing,
tumbling or kayaking motions arise (see references [9, 92,
93, 102, 143, 253, 271, 325] and the reviews [4, 97]). Sim-
ilar features are shown by capsules [206, 326, 327]. The
dynamics of red blood cells (ν ≈ 0.6 [1, 271]) can be even
richer, adding states like breathing or tilted tank-treading
[3, 10, 32, 66, 146, 181, 248, 278, 281, 328–331]. Finally,
spatial variations of the bending modulus can lead to
self-propelled [67] or migrating [332] particles.

2. Poiseuille flows

Studies of vesicles in bounded or unbounded Poiseuille
flows are scarcer than for linear shear flows. Known
shapes for vesicles include bullets, parachutes, croissants
and static slippers [275, 333–335]. Red blood cells add
states known from linear shear flows (e.g. tumbling), but
also novel ones such as snaking or “dynamic” slippers
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Poz. 01 [54], curved trigs

Le 09 [83], curved trigs

Le 10 [149], subdiv. surface

Huang 12 [205], subdiv. surface

Zhu 15 [85], spherical h.

Figure 5. Results from 3D simulations of an initially spherical capsule under the influence of a linear shear flow. (a) 2D sketch.
a is the largest and c the smallest half axis. “Tank treading” refers to the rotation of the membrane around the object’s centroid
while the shape remains constant. (b) Time evolution of the Taylor deformation parameter D for various dimensionless shear
rates G without bending resistance as a function of the dimensionless time γt. Viscosity ratio λ = 1. Results by Huang et
al. [205], Le [149] and Zhu and Brandt [85] are not included for clarity but match well with BIM. (c) Comparison of the recent
literature for G = 0.05 and κ̂B = 0.0375, i.e. with some bending resistance included. Viscosity ratio λ = 1. Method C was
introduced in section III B 3 a, Method S in section III B 4. All references use the same physical models and parameters, except
for Pozrikidis [54] who used a Hookean elastic law. All use the Helfrich or a linear bending model (cf. sec. II A 2 b), except Huang
et al. [205] who employ the bending model introduced by Zarda et al. [324]. However, the employed flow and discretization
algorithms vary greatly. (a), (b) and (c) modified from [27] with permission from Elsevier.

[18, 97, 153, 188, 248, 336]. Moreover, the transition
from the discocyte to the parachute shape was shown to
depend on the bending modulus for vesicles as well as
cells [188, 248].

C. Several particles under flow

In many real-world situations, soft objects are not iso-
lated but occur in suspensions. Numerical studies on
very diluted [13, 18, 114, 115, 337–339] and medium to
dense [72, 109, 110, 117, 121–123, 125, 126, 250, 251, 283–
285, 340–350] RBC suspensions are relatively abundant.
Also see references [8, 18, 20, 32, 33, 351] for recent re-
views. On the other hand, 3D simulations of interacting
vesicles or capsules are quite rare. For example, two or
more capsules have been simulated without [214, 352–357]
and sometimes with [129, 358, 359] some bending rigid-
ity in 3D. Numerical studies of interacting vesicles were
mostly limited to 2D so far (e.g. [13, 217, 337, 360–365]),
with the notable exception of reference [96]. Also note
that references [101, 103, 208, 293] touched the subject
but focused on the development of the numerical method
rather than on physical results.
In table II we give an overview of recent works in

conjunction with the employed bending algorithm. In-
terestingly, most simulations are based on flat triangles
and very often use Method A from equation (13). The
most likely reason for this is the algorithm’s simplicity
and efficiency in terms of the number of arithmetic opera-
tions, although ref. [27] found that it requires comparably

small time steps. Its lack of high fidelity seems to be of
only minor concern for red blood cell suspension simula-
tions given the relative smallness of and uncertainty in
experimentally determined bending moduli (and sponta-
neous curvature), the variation of RBC properties with
age [153, 163, 370–372], and the routinely neglected in-
fluence of the vessel wall’s glycocalyx [373, 374]. Hence,
effects that are also observed in vivo must have a certain
robustness and low-accuracy bending methods may be
acceptable for these applications, although systematic
studies have not been conducted so far.

V. SUMMARY AND FUTURE PERSPECTIVES

Bending forces are an integral component of many
simulation codes for the study of natural or artificial soft
particle suspensions. While the complexity of solving
the Navier-Stokes equations for the hydrodynamic flow
has long been recognized, the computational difficulties
of computing bending forces have not always been fully
appreciated.
In this review, we attempted to give an overview of

the various approaches for bending forces developed dur-
ing the last decades. We focused on membranes whose
bending energy can be described by the famous Helfrich
model. The described methods can be classified into three
broad categories which are termed the force, the strong (or
Euler-Lagrange) and the weak formulation. In addition,
bending algorithms can be combined with different ways
to discretize the surface itself. Flat triangles, spherical



15

Discretization Force formulation strong formulation
(Euler-Lagrange)

weak formulation
(FEM)

Flat triangles

A [18, 72, 109, 117, 118,
121–126, 245, 246, 250,
251, 340, 342, 344–
350, 359, 366, 367]

B [114, 115, 254]

C [110]

E (only H) [186, 274]

C + E [283–285]
[293]

Subdivision methods [96] [358]

Spectral methods
(spherical harmonics)

[84, 101, 103, 207, 208,
341, 343, 368, 369]

Table II. Overview of recent numerical works using full 3D methodologies similar to table I, but for the interaction of several
particles (> 2) in external flows.

harmonics and subdivision schemes are the most widely
used methods. Almost all of the described bending algo-
rithms are currently being used in modern simulations
of soft objects in flows. Yet, the simple case of a capsule
in a linear shear flow clearly shows that the numerically
predicted dynamics are in fairly good agreement with each
other only if bending effects are neglected. As soon as
bending forces are included, the various implementations
start to scatter rather widely.

For future research, both numerical and physical issues
come to mind. Numerically, an important task would be a
systematic study on how the different bending algorithms
behave when combined with different surface discretiza-
tions. While such a comparison has been attempted for
flat triangles and spherical harmonics in section III C, it
does not yet provide a clear and systematic distinction
between the force, strong and weak formulations. It would
certainly be worthwhile to study the advantages and disad-
vantages of the three methodologies more systematically,
which would require to use the same surface discretization
in all three cases. The ultimate goal would be to establish
a definite reference algorithm that is proven to provide
correct and especially robust results and at the same time
has practical performance for dynamic simulations with
many particles. Furthermore, it is at present also unclear
if and how the quality of the various algorithms would
change once a spontaneous curvature is included.
On the more physical side it would be interesting to

systematically assess the influence of the bending rigidity
and/or spontaneous curvature for the practically relevant
case of a soft object in Poiseuille flow similar to what
has been done in shear flow. Moreover, the effect of the
bending resistance on the behavior of dense suspensions
(speed of margination, formation and thickness of the cell-
free layer, etc.) appears to not have been systematically
considered so far.

The final issue concerns the spontaneous curvature H0.
Although a noticeable influence of H0 on the behavior
of a single cell in flow has been found in a recent simu-
lation study [66], a consensus on whether a spontaneous
curvature should be included e.g. for red blood cells, and,

if so, what its value should be, seems currently not in
sight. Presumably, only novel sophisticated experiments
can help to fully settle this question.
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Appendix A: Derivation of the Euler-Lagrange
equation via thin shell theory

While abundant literature on the derivation of the
Euler-Lagrange equation (7) via the variational principle
is available [24, 36, 41, 57–61, 63, 64, 66, 75], completely
worked out derivations by means of the Kirchhoff-Love
thin shell theory are much harder to find. This theory
is based upon the assumptions that deformations do not
change the thickness and that normals to the mid-surface
remain normal after deformation [78, 111]. Here we pro-
vide such a full derivation, with two major purposes in
mind: First, to demonstrate clearly and in a consistent
framework the equivalence of the variational and the thin
shell approach. Second, to obtain the precise relationship
between the often used linear bending models mentioned
in sec. II A 2 b and the Helfrich model. We show that these
linear bending models lead to a traction jump whose lead-
ing order term is equivalent to the leading order term from
the full Helfrich equation (7). Higher order terms usually
differ. To this end, it will not suffice to use equations
that only hold for small deformations as employed e.g. by
Pozrikidis [35, p. 272] [54, p. 277]. Steigmann [76] and
Naghdi [78] provide an appropriate formalism for finite
deformations which we are going to adopt in the present
work. Also see Sauer and Duong for a concise overview
[112].

1. Differential geometry

We will use the formalism of differential geometry to
describe the surface. A very good introduction can be
found in the recent review by Deserno [36], and we will
only summarize the required notations and results below.

As a start, we introduce two curvilinear coordinates θ1
and θ2 and the chart x(θ1, θ2) that describes the deformed
surface.5 The (in general non-unit) tangent vectors are
given by [36, eq. (4)]

aα := x,α ≡
∂x

∂θα
, (A1)

where Greek indices assume the values 1 and 2, and
the comma denotes the partial derivative with respect
to θα acting on each Cartesian component. We further
introduce the normalized normal vector

n :=
a1 × a2

|a1 × a2|
, (A2)

the symmetric metric tensor (coefficients of the first fun-
damental form) [36, eq. (8)]

aαβ := aα · aβ , (A3)

5 In general, several charts will be required [36].

its determinant [36, eq. (13)]

a := det aαβ = a11a22 − a12a21 (A4)

and the symmetric curvature tensor (coefficients of the
second fundamental form) [36, eq. (15)]

bαβ := −aα,β · n = aα · n,β . (A5)

Note that here we use the convention of Deserno regarding
the sign, meaning that the mean curvature of a sphere
will be positive. Steigmann [76] uses the opposite sign.

The mean curvature is given by [76, eq. (3.8)] [78,
eq. (A.2.28)]

H :=
1

2
trace(bαβ) =

1

2
bαα =

1

2
aαβbαβ , (A6)

and the Gaussian curvature by [76, eq. (3.8)] [78,
eq. (A.2.29)]

K := det bαβ = b11b
2
2 − b12b21 =

1

2
ε̂αβ ε̂λµbαλbβµ . (A7)

Here, ε̂αβ := eαβ/
√
a, with the antisymmetric tensor

eαβ defined by e11 = e22 = 0, e12 = 1 and e21 = −1.
Summation over repeated indices is implied.
We will need a few more results from differential ge-

ometry. To this end, we first introduce the tensor [76,
eq. (6.7)]

b̃αβ := 2Haαβ − bαβ . (A8)

With this, we summarize the following relations:

n;α = bβαaβ , (Weingarten) [36, eq. (37a)] (A9a)
aα;β = −bαβn , (Gauss) [36, eq. (37b)] (A9b)

aαβ;γ = 0 , [36, eq. (27)] (A9c)

b̃αβ;α = 0 , [76, eq. (6.6)] (A9d)

aαβbαβ = 2H , [36, eq. (17)] (A9e)

bαµ b̃
µβ = Kaαβ , [76, eq. (6.14)] (A9f)

φ;α = φ,α , [36, below eq. (26)] (A9g)

φ;β;αa
αβ = ∆Sφ , [36, eq. (32)] (A9h)

where φ is some scalar valued function and ∆S the Laplace-
Beltrami operator. The semicolon denotes the covariant
derivative defined with respect to aαβ [36, eq. (24a)]. Note
that covariant derivatives do not commute in general [36,
eq. (34)], and that eq. (A9g) does not hold if φ is a tensor
density with non-zero weight such as a [36, footnote 9].
Another relation that will be needed is

b̃αγbγβ = aβλb
λ
γ b̃
αγ = Kaβλa

λα = Kδαβ , (A10)

where the usual rising operation [36, eq. (10)] was used
for the first equal sign, then eq. (A9f), and finally the
Kronecker-delta δαγ [36, eq. (9)]. Also remember that the
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metric and curvature tensors are symmetric. This leads
to

b̃αβbαβ = Kδαα = 2K . (A11)

Combination with eq. (A8) gives [58, eq. (2.34)]

bαγbγβ = 2Hbαβ −Kδαβ (A12)

and

bαβbαβ = 4H2 − 2K . (A13)

Moreover, using eqs. (A8), (A9c), (A9d) and (A9g) we
can also derive

bαβ;α = 2H,αa
αβ . (A14)

2. Thin shell theory

Performing a force balance for a small patch of the
surface [35, 111], one can derive the local equilibrium
balance from equation (5) as [76, eq. (2.1)] [78, eq. (9.13)]

T α
;α +4fB = 0 . (A15)

4fB is the traction jump due to the flows (as in eq. (5))
and T α are two stress vectors.6 If inertia plays a role,
an additional term would need to be taken into account
[78, 111, 112]. For simplicity we will restrict ourselves to
the interior of the surfaces, i.e. we will not consider the
boundaries of open objects.

To continue, we separate T α into tangential and normal
components:

T α = Nα + Sαn , (A16)

with [76, eq. (2.4)]

Nα := Nβαaβ , (A17)

where Nαβ is an in-plane tension tensor and Sα represents
the transverse shear tension [35]. Note that Nαβ is in
general not symmetric [112]. Furthermore, we introduce
a tension tensor σαβ via [76, eq. (2.5)]

Nαβ = σαβ + bαµM
µβ , (A18)

where Mαβ are bending moments [35]. Finally, we have

6 Deserno [36] calls −Tα the surface stress tensor and denotes it
by “fa”.

from a local torque balance7 [76, eq. (2.9)] [35, ch. 4.2]

Sα = −Mαβ
;β . (A19)

σαβ (or equivalently Nαβ) and Mαβ are determined
from appropriate constitutive laws. One possibility is
to specify them directly [54, 58, 79–81, 83–85]. Alter-
natively, they may be derived from a postulated energy
density function. To this end, we introduce the energy
per unit undeformed area ε. Assuming a homogeneous
mass density, σαβ and Mαβ are then determined by

σαβ =
1

J

(
∂ε

∂aαβ
+

∂ε

∂aβα

)
, (A20a)

Mαβ =
1

2J

(
∂ε

∂bαβ
+

∂ε

∂bβα

)
(A20b)

(compare [77, eq. (25)] [76, eq. (2.6)], [111, eq. (4.9)] and
[78, eq. (15.15)] with the help of footnote 7). Note that for
example

(
∂ε
∂aαβ

+ ∂ε
∂aβα

)
/2 is sometimes simply written as

∂ε
∂aαβ

[78, p. 537] [375, eq. (3.16)]. The local area dilation
is given by [76, eq. (2.7)] [77]

J :=
√
a/A . (A21)

Here, A is the determinant of the metric tensor of the
reference surface.
To be more precise, the energy density ε only deter-

mines the symmetric parts of σαβ and Mαβ because the
right-hand side in eq. (A20) only contains symmetric
expressions. The skew (or antisymmetric) parts are un-
determined at first [78, p. 537 and p. 551]. However,
the skew part of the bending moments Mαβ plays no
role in this case and can be set to zero [78, eq. (15.17)]
without loss of generality [111, p. 285], making Mαβ sym-
metric. Moreover, a local torque balance can be used to
derive (compare [112] [78, eq. (10.21)] [111, eq. (6.1)] [35,
eq. (4.14)] [84, eq. (22b)] [58, eq. (A.8)] while keeping
footnote 7 in mind)

eαβ(Nαβ − bαµMµβ) = 0 . (A22)

The antisymmetric tensor eαβ has been introduced above.
This equation fixes the skew part of Nαβ [78, eq. (15.18)]

7 Note that for most of the quantities different conventions ex-
ist; here we follow reference [76]. Most importantly, Nαβ from
eq. (A17) might be defined transposed as Nα = Nαβaβ [78, eq.
(9.40)], and Mαβ might be obtained from a derivative with re-
spect to −bαβ in eq. (A20b) [78, eq. (5.61),(15.15)] [111, eq.
(4.9)]. If only the −bαβ derivative convention is used, eq. (A18)
becomes Nαβ = σαβ − bαµM

µβ [111, eq. (4.9)] and eq. (A19) be-
comes Sα =Mαβ

;β [111, eq. (5.3)] [84, eq. (22a)] [58, eq. (A.7)] [35,
eq. (4.14)]. If additionally the transposed convention is employed,
we have Nαβ = σαβ − bβµM

µα [78, eq. (10.26)]. Naturally, these
two conventions also change eq. (A22). We also remark that the
sign convention for the curvature tensor (A5) is independent of
this.
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by implying that the skew part of σαβ should be zero, i.e.
that σαβ must be symmetric [112, eq. (71)]. Thus, in short,
one can take eqs. (A20) to define σαβ andMαβ completely,
and eq. (A22) will be satisfied automatically [111].8
Before we continue, we derive explicit expressions for

the tangential (fβ) and normal (f3) components of the
traction jump

4fB = fβaβ + f3n . (A23)

To this end, rewrite

T α
;α = (Nβαaβ);α + (Sαn);α

= Nβα
;α aβ +Nβαaβ;α + Sα;αn + Sαn;α .

Using eqs. (A9a) and (A9b), we find

T α
;α = (Sαbβα +Nβα

;α )aβ + (Sα;α −Nβαbβα)n . (A24)

Hence, eq. (A15) can be written as

fβ = −Sαbβα −Nβα
;α , (A25a)

f3 = −Sα;α +Nαβbαβ . (A25b)

These equations match with references [76, eq. (6.17)]
(mind the H sign convention), [78, eq. (15.20)] [58,
eq. (A9),(A10)] (mind footnote 7) as well as with [84,
eq. (23)] [86, eq. (A18),(A19)] [35, eq. (4.13)] (mind foot-
note 7 and the H sign).

Given an energy density ε, equations (A15) – (A20) fully
determine the traction jump 4fB. Hence, the goal will
be to apply this formalism to the Helfrich model from
equation (1). To this end, note again that ε is the energy
per unit undeformed area [77], i.e. the total energy of
some surface patch is given by

∫
εdS0 where the inte-

gration goes over the undeformed surface (compare [111,
eq. (2.19)] and refs. [43, 77]). The Helfrich energy density
εB as in the main text, however, is usually specified per
unit deformed area, i.e. the total energy is

∫
εB dS. Con-

sidering that dS0 =
√
A dθ1dθ2 and dS =

√
a dθ1dθ2 [36,

eq. (84)], and furthermore demanding that ε dS0
!
= εB dS,

we find with equation (A21) [77]

ε = J εB . (A26)

Thus, for the Helfrich model from eq. (1) [76, eq. (7.17)]:

ε = J
[
2κB(H −H0)2 + κKK

]
. (A27)

3. Derivation of the traction jump for a general
energy functional

a. Intermediary results

To start the derivation of general formulas, we use that
the bending contribution to ε for fluid membranes can

8 Note, that if some constitutive laws for Nαβ and Mαβ are pro-
vided directly rather than via some energy density (as is done
for some of the linear bending models of section A5), eq. (A22)
constitutes a restriction for the possible laws [376, ch. 4].

only depend on J , H and K [43]:

ε = ε(J,H,K) . (A28)

The Helfrich model is contained as a special case. Using
the chain rule, we find for eqs. (A20) [76, eq. (6.13)]

σαβ = − 1

J
(−Jε,J + 2Kε,K + 2Hε,H) aαβ

+ ε,H b̃
αβ/J , (A29a)

Mαβ = − 1

J

(
1

2
ε,Ha

αβ + ε,K b̃
αβ

)
, (A29b)

where b̃αβ was defined in equation (A8). Furthermore,
using eqs. (A9c) and (A9d), we obtain for the transverse
shear tension in eq. (A19) [76, eq. (6.18)]

Sα =
1

2
(ε,H/J);β a

αβ + (ε,K/J);β b̃
αβ . (A30)

The next step is to compute Nαβ from equation (A18).
In order to facilitate the connection with the linear bend-
ing models later on, we separate the contributions by
introducing two artificial parameters ζ and ξ:

Nαβ = ζσαβ + ξbαµM
µβ . (A31)

Setting ζ = ξ = 1 recovers the full equations. Next,
compute

bαµM
µβ =

1

2J
ε,Hb

αβ +
ε,K
J
Kaαβ , (A32)

where eq. (A9f) and the usual rising operations [36,
eq. (10)] have been used. Using the definition of b̃αβ ,
equation (A31) assumes the form

Nαβ =− 1

J
[−Jζε,J + (2ζ − ξ)Kε,K ] aαβ

− 1

2J
(2ζ − ξ)ε,Hbαβ .

(A33)

b. Tangential component

The tangential components of the traction jump are
given via equation (A25a). Using eqs. (A9c), (A9f) and
(A14), we find

fβ =
1

2
(2ζ − ξ − 1)(ε,H/J);αb

αβ

+
[

(−ζε,J + (2ζ − ξ)Kε,K/J);α

− (ε,K/J);αK

+ (2ζ − ξ)H,αε,H/J
]
aαβ ,

(A34)

or for the true values ξ = ζ = 1

fβ =
[

(−ε,J +Kε,K/J);α − (ε,K/J);αK

+H,αε,H/J
]
aαβ .

(A35)
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c. Normal component

To evaluate eq. (A25b), first calculate

Sα;α =
1

2
∆S (ε,H/J) + (ε,K/J);α;β b̃

αβ , (A36)

where we used eqs. (A9c), (A9d), (A9g) and (A9h) and
the symmetry of b̃αβ to exchange the covariant derivatives.
Using eqs. (A9e), (A8) and (A13), we obtain the general
result for arbitrary ζ, ξ and ε(J,H,K)

f3 =− 1

2
∆S(ε,H/J)− (ε,K/J);α;β b̃

αβ

− 2H

J
[−ζJε,J + (2ζ − ξ)Kε,K ]

− 2ζ − ξ
J

(2H2 −K)ε,H ,

(A37)

or for the true values ξ = ζ = 1

f3 =− 1

2
∆S(ε,H/J)− (ε,K/J);α;β b̃

αβ

− 2H

J
[−Jε,J +Kε,K ]

− 1

J
(2H2 −K)ε,H .

(A38)

This is the final general formula for the normal component
of the traction jump.

4. Derivation of the traction jump for the Helfrich
model

We will now specialize the above relations for the Hel-
frich model from eq. (A27) for constant κB and κK. For
convenient comparison with the literature, we will also
provide intermediary results.

a. Intermediary results

First of all, from eqs. (A29) we find the symmetric ten-
sion tensor σαβ and the bending moments as [77, eq. (28)]

σαβ =
[
2κB(H −H0)2 − κKK

]
aαβ

− 4κB(H −H0)bαβ , (A39a)

Mαβ = −2κB(H −H0)aαβ − κKb̃αβ . (A39b)

Hence, the transverse shear tension (A30) is given by

Sα = 2κB(H −H0);β a
αβ , (A40)

and the full in-plane tension tensor (A33) is

Nαβ =
[
2κBζ(H −H0)2 − (ζ − ξ)κKK

]
aαβ

− 2κB(2ζ − ξ)(H −H0)bαβ .
(A41)

Also note that for ξ = ζ = 1 (the correct values), one
directly finds [77, eq. (28)]

Nαβ = 2κB(H −H0)2aαβ − 2κB(H −H0)bαβ , (A42)

i.e. the result is independent of the saddle-splay modu-
lus κK.

We shortly stop at this point and actually compute the
stress vectors T α from equation (A16). A short compu-
tation shows for ζ = ξ = 1:

T α = 2κB(H −H0)2aαβaβ

− 2κB(H −H0)bαβaβ

+ 2κB(H −H0),βa
αβn .

(A43)

This expression for the stress vectors matches with the
surface stress tensor from ref. [36, eq. (96)] for a constant
H0 and refs. [61, eq. (51)] [62, eq. (14)] for H0 = 0
up to a definition-implied global sign. It also agrees
with references [70, eq. (2.64)] and [57, eq. (128)]. As
explained in ref. [36], T α represent a first integral of the
Euler-Lagrange equation.

b. Tangential component

Substituting eq. (A27) into eq. (A34) gives the following
tangential components of the traction jump:

fβ =2κB(2ζ − ξ − 1)(H −H0),αb
αβ

+ [4κB(H −H0)H,α + κKK,α] (ζ − ξ)aαβ .
(A44)

For ζ = ξ = 1 this obviously reduces to

fβ = 0 . (A45)

Thus, for the actual Helfrich model the tangential trac-
tions vanish in the interior of the surface if no additional
constraints are used.

c. Normal component

It is straightforward to evaluate eq. (A37) with ε from
eq. (A27). The result is

f3 = −2κB

{
∆S(H −H0)

+ 2(H −H0)
[
(2ζ − ξ)(2H2 −K)

− ζH(H −H0)
]}

− 2κK(ζ − ξ)HK ,

(A46)

or for ξ = ζ = 1

f3 = −2κB[∆S(H −H0)

+ 2(H −H0)(H2 −K +H0H)] .
(A47)
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Taking eq. (A23) into account, the results (A45) and
(A47) match exactly with the one from eq. (7) obtained
via a variational derivative. Thus, the variational and the
shell theory approaches are compatible with each other
and lead to the same results. Also note that the κK term
drops out, as required by the Gauss-Bonnet theorem.
We further remark that the Laplace-Beltrami term in
eq. (A46) is always there, regardless of the values of κK,
ξ and ζ.

d. Order of the individual terms

In view of the linear bending models presented in the
next section, it is of some interest to know the importance
of the individual terms occurring in equation (A47). To
this end, consider a general surface in the Monge gauge
[36]: At least locally, the surface can be described by
the vector x̃(x, y) := (x, y, h(x, y)) ∈ R3 with the height
function h. We assume that the deviations from a plane
are of order ψ > 0, i.e. h,x ∼ O(ψ) and h,y ∼ O(ψ).
Next, a deformation u ∈ R3 leads to the deformed surface
x(x, y) := x̃(x, y) + u(x, y). The deformation shall be of
order χ > 0, i.e. u,x ∼ O(χ) and u,y ∼ O(χ). Further-
more, we set the reference shape (but not the undeformed
state x̃) to be a flat plane (H0 = 0).

With this we can compute the various geometric quan-
tities for the deformed surface x to leading orders, similar
to reference [86]. In the end, we obtain

∆SH ∼ O(ψ) +O(χ) +O(ψχ) + h.o. , (A48a)

H(H2 −K) ∼ O(χψ2) + h.o. , (A48b)

and for the full normal component

f3n ∼ O(ψ) +O(χ) +O(ψχ) + h.o. , (A48c)

where “h.o.” stands for “higher orders”. Hence, at least
for small deviations from a plane (ψ, χ � 1) we have
|∆SH| � |H(H2 − K)|, which is consistent with refer-
ence [86, eq. (A20)].
This also seems to hold for larger deviations from a

plane. For example, for the typical RBC shape from
equation (B14) and figure 2, ∆SH is found to be up to
almost one order of magnitude larger than the others, i.e.
[27]

max |2∆SH| ≈ 218 , (A49a)

max |4H(H2 −K)| ≈ 28.8 , (A49b)

max |f3n| ≈ 189 (A49c)

(units chosen such, that the large RBC radius is 1 and
κB = 1).

5. Linear bending models

Some authors use a so-called “linear bending model”
instead of the Helfrich model as already described in

sec. IIA 2 b of the main text. The purpose of this sec-
tion is to shed some light on the relationship between
these two types. In linear bending models, the bending
moments and in-plane tensions are not derived from an
energy functional as in eqs. (A20a) and (A20b). Instead,
their form is given by postulated constitutive laws. A
common assumption of such models is that the saddle
splay modulus κK plays no role (which is always true for
closed objects with constant topology).

In the following we will consider four such models (a – d)
which are similar, but not identical.

a. Model a The first constitutive law we consider is
the “linear isotropic model” presented e.g. by Pozrikidis
[80, eq. (10)] [81, eq. (2.5.11)]

Mαβ = −2κB(H −H0)aαβ . (A50)

It is further assumed [54, p. 277] that only the antisym-
metric components of the in-plane tension tensor Nαβ

are affected by the bending rigidity, namely via eq. (A22).
Due to the particular form of Mαβ , this contribution
however amounts to zero, i.e. we have in total

Nαβ = 0 . (A51)

Note that additional material properties (such as resis-
tance against shearing) might still lead to a non-zero
total Nαβ . The two equations (A50) and (A51) are cap-
tured by κK = 0 and ζ = η = 0 in our general framework
presented above (cf. eqs. (A31) and (A39b)). The result-
ing traction jump is therefore obtained via eqs. (A46) and
(A44) as

fβ = −2κB(H −H0),αb
αβ , (A52a)

f3 = −2κB∆S(H −H0) . (A52b)

Considering expression (A48), the normal component
matches to leading orders with the result (A47) for the
Helfrich model. Interestingly, an additional tangential
component arises. For the series expansion similar to
eq. (A48) we find fβaβ ∼ O(ψχ)+h.o., and so the normal
component dominates at least for ψ, χ � 1. This is
affirmed for the typical RBC shape, where max |fβaβ | ≈
62.7 which is less than one third of the value for the
normal component (A52b) (see eq. (A49a)). Moreover,
figure 6 depicts the complete traction jumps and the
relative deviation to the Helfrich model for the RBC
shape. In the rather flat dimple regions, the deviations
are small (. 5 %) which is in agreement with the series
expansion; they only become larger in the high curvature
regime. Thus, all in all, the complete traction jump 4fB

of model a matches with the Helfrich model to leading
order O(ψ) +O(χ).
b. Model b Another model that has sometimes been

used [80, eq. (8)] [81, eq. (2.5.9)] [83, eq. (25)] [54,
eq. (4.6)] [5, eq. (23)] is given by

Mαβ = −κB(bαβ − 2H0a
αβ) . (A53)

Nαβ is once again determined via eq. (A22) (assumption
of no symmetric components), and once again the skew



31

 0

 50

 100

 150

 200

 250

0 �/8 �/4 3�/8 �/2

T
ra

c
ti
o
n
 j
u
m

p
 |
�
f B

|

�

(a)

Helfrich model
Model a/b/c

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

0 �/8 �/4 3�/8 �/2

R
e
la

ti
v
e
 d

e
v
ia

ti
o
n

�

(b)

Figure 6. Comparison between the traction jumps of the Helfrich model and the linear bending models for the typical red blood
cell shape from figure 2. The spontaneous curvature is set to zero (H0 = 0), in which case linear bending models a, b and c are
equivalent. Analytic computations via equation (B14), and the polar angle is defined as Θ := arccos

(
x3/
√
x21 + x22 + x23

)
with

the Cartesian coordinates x1, x2 and x3. Note that the shape is axisymmetric, and thus the results are independent of the
azimuthal angle. (a) The magnitude of the full traction jump |4fB| (units chosen such, that κB = 1 and the large RBC radius
is 1). (b) Relative deviation |4fH

B −4fL
B|/max |4fH

B |, where the upper indices H and L denote the Helfrich and linear bending
models, respectively, and max |4fH

B | ≈ 189. Only minor deviations are observed in the rather flat dimple regions (Θ . 5π/16),
in agreement with the series expansion from the main text.

part and hence the full Nαβ can be shown to be zero, too.
Using eqs. (A19), (A9c) and (A14), we find

Sα = 2κB(H −H0),β a
αβ , (A54)

which matches exactly with expression (A40) for the Hel-
frich model. Considering that Nαβ = 0, the traction jump
is thus given by eqs. (A46) and (A44) with ζ = η = 0:

fβ = −2κB(H −H0),αb
αβ , (A55a)

f3 = −2κB∆S(H −H0) . (A55b)

Thus, at least from the viewpoint of the traction jump,
models a and b can be considered to be equivalent.
c. Model c Yet another constitutive equation is the

one employed by Zhao et al. and others [84, eq. (21)] [85,
p. 382] [86, eq. (A12)]. Although it is also called “linear
isotropic model” in reference [84], its form is slightly
different from Pozrikidis’s version (eq. (A50)). It is given
by

Mα
β = −κB(bαβ −Bαβ ) . (A56)

Equation (A22) determines the skew components of Nαβ

and the symmetric components of Nαβ are assumed to be
independent of the bending rigidity. Bαβ = −X ,αβ ·N
is the curvature tensor of the reference surface X(θ1, θ2)
(cf. eq. (A5) and [77, eq. (11)]) and N the corresponding
normal vector. Furthermore, we have Bαβ = AαγBγβ with
the metric tensor Aαβ of the reference state [77]. The in-
plane tension tensor is according to eq. (A22) and ref. [78,
eq. (15.18)]

Nαβ =
1

2
κBB

µ
γ bλµ(aαλaγβ − aαγaλβ) , (A57)

because its symmetric components are assumed to be
zero (if no additional elasticities exist). This expression

is non-zero for general reference states X although some
authors assume otherwise [84, 85]. As an example, taking
a unit sphere [36, eq. (2b)] for the deformed geometry
x(θ1, θ2) leads to (Nαβ) = 1

2κB(B2
1 −B1

2/ sin2 θ1)
(
0 −1
1 0

)
in spherical coordinates, where θ1 ∈ [0;π] is the polar
angle. Continuing, the components of the traction jump
follow from equation (A25) as

fβ = −2κBH,αb
αβ + κBB

α
γ;λa

γλbβα

+ 1
2κB(Bµγ bλµ);α(aαλaγβ − aαγaλβ) ,

(A58a)

f3 = −2κB∆SH + κBB
α
γ;β;αa

γβ . (A58b)

The second line for fβ is absent if we assume Nαβ = 0.
Interestingly, f3 is always independent of Nαβ for the
expression from equation (A57). In any case, the result
matches with the previous two models for a flat reference
state, but differs for general Bαβ . A precise and concise
relationship is unfortunately not easily established. We
further remark that application of eq. (A58) to small
axisymmetric deformations of a spherical membrane re-
covers the expressions from reference [309, eq. (A19)] to
leading order.
d. Model d Jenkins [58] focuses on the derivation of

the Euler-Lagrange equation for the Helfrich model for
H0 = 0 via the variational approach. Later on, he postu-
lates some constitutive equations to make the connection
between the variational and the thin shell formulation,
namely [58, eqs. (A.11), (A.12)]

Mαβ = −2κBHa
αβ , (A59a)

Nαβ = −2κBHb
αβ (A59b)

(plus some inextensibility contribution). Most notably
there is a non-zero bending contribution to Nαβ , contrary
to the previous models. He shows that these equations
lead to the same Euler-Lagrange equation.
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Unfortunately, he made a mistake during his variational
derivative. Namely, he forgot to vary the surface element
or equivalently δ

√
a in [58, eq. (2.18)].9 This results in

2H2 instead of the correct H2 in the Euler-Lagrange
equation (A47). Another consequence is that it leads him
to propose an incorrect constitutive law for Nαβ . Taking
this into account, he would have probably specified the
constitutive equations as

Mαβ = −2κBHa
αβ , (A60a)

Nαβ = 2κBH
2aαβ − 2κBHb

αβ . (A60b)

Comparing with eqs. (A39b) and (A42), these equations
reproduce the traction jump of the Helfrich model (for
H0 = 0) exactly.
e. Summary To summarize, the traction jump de-

rived from the linear bending models a and b agree with
each other, and with model c at least for zero reference
curvatures. Furthermore, all three agree to leading order
(i.e. for small deviations from a plane) in the traction jump
with the Helfrich law for a flat reference state, where the
leading order term is given by ∼ ∆SH. Perfect agreement
with the Helfrich model, however, requires to take into
account the non-zero bending contributions to the sym-
metric part of the in-plane tension tensor Nαβ (model d).
These are often neglected, inducing additional tangential
components.

6. Inextensibility constraint

Similar to the variational derivative formalism, it is
also possible to include the local area incompressibil-
ity constraint in the thin-shell derivation. This can be
done by adding the term

∫
S
σ̃ dS to the total energy (cf.

sec. II A 2 a). This is equivalent to adding σ̃J to eq. (A27),
i.e. [76, eq. (2.8)] [112]

ε→ ε+ σ̃J , (A61)

Here, σ̃ = σ̃(θ1, θ2) is the local Lagrange multiplier. Tak-
ing into account that σ̃ does not depend on the surface
(i.e. neither on J , H or K) but only on the curvilinear
coordinates, eq. (A38) then provides the normal contri-
bution

f3 → f3 + 2Hσ̃ (A62)

for ζ = 1. On the other hand, the tangential equa-
tion (A35) gives

fβ → fβ − σ̃,αaαβ , (A63)

9 Jenkins additionally integrates over the deformed rather than the
undeformed surface for the γ term in [58, eq. (2.18)], leading to
an incorrect equation for the surface inextensibility. Otherwise,
he would have obtained the correct equation (A65). Nevertheless,
this does not affect the bending traction jump itself.

i.e. a non-zero additional term. Using the definition of
the surface gradient [52, eq. (60)] given by

∇Sσ̃ = σ̃,αa
α = σ̃,αa

αβaβ , (A64)

as well as eq. (A23), the total traction jump thus receives
the additional term

4fB →4fB + 2Hσ̃n−∇Sσ̃ (A65)

due to the inextensibility. Its significance has already
been explained in section IIA 2 a.

Appendix B: Using spherical harmonics to compute
the bending forces

We detail here the direct computation of the trac-
tion jump from eq. (7) (strong formulation) using spher-
ical harmonics. The methodology closely follows refer-
ences [101, 103].

A square-integrable function f(ϑ, ϕ) with ϑ ∈ [0;π] and
ϕ ∈ [0; 2π[ can be expanded into a spherical harmonics
series:

f(ϑ, ϕ) =

∞∑
l=0

l∑
m=−l

f̂ml Y
m
l (ϑ, ϕ) . (B1)

The coefficients f̂ml ∈ C are given by an integration over
the unit sphere,

f̂ml =

∫ π

0

∫ 2π

0

f(ϑ, ϕ)Ȳ ml (ϑ, ϕ) sinϑdϕdϑ . (B2)

Ȳ ml is the complex conjugate of the spherical harmonic
Y ml defined by

Y ml (ϑ, ϕ) :=

√
2l + 1

4π

(l −m)!

(l +m)!
P̃ml (ϑ)eimϕ , (B3)

with i being the imaginary unit, P̃ml (ϑ) := Pml (cosϑ) and
the associated Legendre polynomials

Pml (x) :=
(−1)m

2l l!
(1− x2)m/2

dl+m

dxl+m
[(x2 − 1)l] . (B4)

Note that the Condon-Shortley phase (−1)m is included
here. We compute the spherical harmonic Y ml via the C++
boost library.
Let p be the truncation order for the spherical har-

monics expansion. The latitude direction is covered by
p + 1 points ϑi = arccos zi, i = 0, . . . , p, where zi are
the Gauss-Legendre nodes with corresponding weights νi
(computable e.g. via the gauleg routine from [377]). In-
tegrations are done using the Gauss-Legendre quadra-
ture. Furthermore, we distribute 2p + 2 points equidis-
tantly in the longitudinal direction, i.e. ϕj = πj/(p+ 1),
j = 0, . . . , 2p + 1. Integration in this direction is per-
formed by means of the trapezoidal rule with weights
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µj = π/(p+ 1), j = 0, . . . , 2p+ 1 (i.e. every point has the
same weight). Hence, equation (B2) is approximated by

f̂ml ≈
p∑
i=0

2p+1∑
j=0

νiµjf(ϑi, ϕj)Ȳ
m
l (ϑi, ϕj) . (B5)

These algorithms and integration points are chosen be-
cause eq. (B5) is then superalgebraically = exponentially
= spectrally convergent with the order p for smooth func-
tions [101]. Note that due to the truncation, we have
l = 0, . . . , p and m = −l, . . . , l. This also implies

f(ϑi, ϕj) ≈
p∑
l=0

l∑
m=−l

f̂ml Y
m
l (ϑi, ϕj) . (B6)

We remark that the forward and backward transforma-
tions can be done using the Fast Fourier Transform (FFT)
for the longitude and the Fast Legendre Transform (FLT)
for the latitude direction. In practice FLTs are rarely used.
For simplicity we also abstain from using FFTs, as they
would make the computation of higher order derivatives
much more complex.
Derivatives of f(ϑ, ϕ) can now be rolled off onto the

spherical harmonics Y ml . The most problematic ones
are derivatives with respect to ϑ, where one of several
recurrence relations for the Legendre polynomials should
be used. One possible choice that comes without issues at
the poles ϑ = 0, π is presented in reference [287]. Taking
into account the Condon-Shortley phase and using the
chain rule, we find

∂

∂ϑ
Y ml (ϑ, ϕ) = −1

2

√
(l +m)(l −m+ 1)Y m−1l (ϑ, ϕ)eiϕ +

1

2

√
(l −m)(l +m+ 1)Y m+1

l (ϑ, ϕ)e−iϕ , (B7a)

∂2

∂ϑ2
Y ml (ϑ, ϕ) =

1

4

√
(l +m)(l +m− 1)(l −m+ 1)(l −m+ 2)e2iϕY m−2l (ϑ, ϕ)

− 1

4

[
(l −m+ 1)(l +m) + (l −m)(l +m+ 1)

]
Y ml (ϑ, ϕ) (B7b)

+
1

4

√
(l −m)(l −m− 1)(l +m+ 1)(l +m+ 2)e−2iϕY m+2

l (ϑ, ϕ) .

In eq. (B7a), the full Y m−1l term is missing for m = −l
and the full Y m+1

l term is missing for m = l (so the result
is simply zero for m = l = 0). Similar for eq. (B7b), the
term containing Y m−2l is absent form 6 −l+1 and the full
Y m+2
l term must be omitted for m > l − 1. Fortunately,
ϕ derivatives are simpler: The k’th derivative is obviously
given by

∂k

∂ϕk
Y ml (ϑ, ϕ) = (im)kY ml (ϑ, ϕ) , k ∈ N . (B8)

We use these formulas to compute derivatives of f by
substituting them into eq. (B6), e.g.

∂

∂ϑ
f(ϑi, ϕj) ≈

p∑
l=0

l∑
m=−l

f̂ml

[
∂

∂ϑ
Y ml (ϑ, ϕ)

]∣∣∣∣ϑ=ϑi
ϕ=ϕj

.

(B9)
We note that second order derivatives should not be

computed by two successive first order derivatives involv-
ing one back and forward transformation, because not
every first order derivative results in a smooth function
on the surface. As an example take the z-component of
the unit sphere, z(ϑ, ϕ) = cosϑ. Its first order derivative
is ∂ϑz(ϑ, ϕ) = − sinϑ, which is not smooth at ϑ = 0, π
when considered on the sphere (compare e.g. ϕ = 0 and
ϕ = π). Thus, its series expansion converges only very
slowly. Direct computation of the second order derivative
via eq. (B7b) circumvents this particular problem. The

same holds for derivatives with respect to ϕ and mixed
derivatives.

With this setup in place, calculating the traction jump
from eq. (7) is more or less straightforward. We employ
the definitions and results of differential geometry from
sec. A 1 with θ1 = ϑ and θ2 = ϕ. However, for notational
convenience we will use the alternative names

E := a11 , F := a12 = a21 , G := a22 , (B10a)
L := b11 , M := b12 = b21 , N := b22 . (B10b)

With W 2 := EG− F 2, the mean curvature is then given
by [101]

H =
EN − 2FM +GL

2W 2
(B11)

and the Gaussian curvature by

K =
LN −M2

W 2
. (B12)

The Laplace-Beltrami operator of some function f is [101]

∆Sf =
1

W

∂

∂ϕ

(
E∂ϕf − F∂ϑf

W

)
+

1

W

∂

∂ϑ

(
G∂ϑf − F∂ϕf

W

)
,

(B13)

which in the present context is of course only really applied
to H.
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In practice, we start by computing the grid (ϑi, ϕj) for
a given order p with i = 0, . . . , p and j = 0, . . . , 2p + 1
as explained above. The surface nodes x(ϑi, ϕj) for the
RBC shape are then obtained by setting [27]

x1(ϑi, ϕj) = R sinϑi cosϕj , (B14a)
x2(ϑi, ϕj) = R sinϑi sinϕj , (B14b)

x3(ϑi, ϕj) = ±R
2

√
1− ρ2(C0 + C1ρ

2 + C2ρ
4) , (B14c)

where R is the given length of the large half-axis, ρ2 :=
(x2+y2)/R2, C0 = 0.2072, C1 = 2.0026 and C2 = −1.1228
[203, 378]. The plus sign is used for ϑ 6 π/2, the minus
sign otherwise.
Next, each individual Cartesian component of x is

transformed via eq. (B5) to provide the representation in
the spectral domain. First and second order derivatives
(in the spatial domain) are then obtained by means of
equations (B7a), (B7b) and (B8) in conjunction with
backward transforms as in equation (B9). This allows us
to calculate H and K at each grid point (ϑi, ϕj).
For ∆SH, eq. (B13) as well as W are first expanded

by hand via the chain rule. Derivatives of E, F , G are
obtained directly from the spectral coefficients of x as
before. To get the derivatives of H, we first transform
H into spectral space (eq. (B5)) and then apply again

the derivative formulas (B7). Afterwards, the traction
jump from eq. (7) is obtained by combining all temporary
results.
We emphasize again that the transform (B5) is only

applied to the components of x and once for H, but
not to any other intermediate quantity such as aαβ or
bαβ . In principle, it would be possible to bypass the
transform of H by expanding ∆SH via the chain rule until
only derivatives of x (up to fourth order) remain, which
can then be evaluated directly using formulas similar to
equation (B7a) [287]. We speculate that it would boost
algorithmic precision because the only case where aliasing
can then occur is in the transform of x. This should
make de-aliasing procedures as used in references [84, 101,
103, 207] obsolete. Considering the results presented in
section IIIC, we would then expect a similar drop to
machine precision for the traction jump in figure 4 as seen
for the mean curvature in figure 3. However, deriving the
necessary formulas is quite cumbersome and therefore has
not been attempted so far.
On a related note, the de-aliasing rules mentioned in

references [84, 101, 103, 207] are only required in the
first place if other formulas need to be evaluated that
are content with smaller orders of p. In this case, the
smaller order can be upsampled by means of interpolation
(i.e. evaluating eq. (B6) also at intermediary points) for
the sake of computing the bending forces with a higher
resolution.
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