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A solute is released from the surface of a sphere flowing freely in a cylindrical channel
mimicking a modern drug delivery agent in a blood vessel. The solute then disperses
by the combined action of advection and diffusion. We consider reflecting boundary
conditions on the sphere and absorbing boundary conditions on the channel surface
mimicking a biochemical reaction between the drug and endothelial cells on the vessel
surface. The drug is released either instantaneously or continuously in time. The two key
observables are the mean residence time in the flow before the drug is absorbed and the
width over which it is spread on the vessel surface upon reaction. We numerically solve
the Fokker-Planck equation for the time-dependent substance concentration combined
with an analytical solution of the flow field. As expected, we find that the presence of
the sphere leads to a substantial reduction in mean residence time and reaction width.
Surprisingly, however, even in the limit of very large Péclet numbers (high velocities) the
sphere-free case is not generally recovered. This observation can be attributed mainly
to the small, but non-negligible radial flow component induced by the moving sphere.
We further identify a strong influence of the release position which sharply separates
two qualitatively different regimes. If the release position is between θ0 = 0 (front) and
a critical θc the substance is quickly advected away from the sphere and its overall
behavior is similar to free diffusion in an empty channel. For release between θc and
θ0 = π (tail), on the other hand, the substance is pushed towards the sphere leading
to behavior reminiscent of confined diffusion between two infinitely long cylinders. The
critical position θc is generally smaller than π/2 which would correspond to an equatorial
release position.
Published as J. Fluid Mech. 819, pp. 104-120 (2017). Copyright by Cambridge Uni-
versity Press.

1. Introduction

A substance which is released into a flowing liquid is subject to advection by the flow
and molecular diffusion. The combination of both mechanisms leads to a smearing out
of the substance concentration in space and time. Understanding the often complex
interplay between these two physically very different effects is important in various
situations such as dispersion of pollutants in rivers or the distribution of medical drugs
in blood flow.

The governing equation for the time- and space-dependent concentration of the sub-
stance in flow is a Fokker-Planck-type convection-diffusion equation which can be for-
mulated by straightforward mass conservation. A full analytical solution, however, does
not exist even for the most simple situation of a Poiseuille flow in a straight cylindrical
channel with a non-reacting boundary. Extensive studies have therefore focussed on the
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more tractable long-time regime starting with the pioneering works by Taylor (1953),
Aris (1956) and Chatwin (1970). Their central assumption is that the elapsed time
since the injection of the substance is long enough that the radial concentration profile
is completely uniform. By then considering only radially averaged concentrations, the
problem becomes one-dimensional and is amenable to an analytical solution showing that
the concentration spreads with an effective diffusion coefficient which is a combination
of the molecular diffusion coefficient and the shear dispersion due to the external flow.
Over the last decades this so-called Taylor-Aris solution has been extended in various
directions including novel derivation and solution methods [Giona & Cerbelli (2010);
Berezhkovskii (2012)], non-steady flows [Ng (2006); Vedel & Bruus (2012)], slip effects
and elastic boundaries[Ng (2010); Daddi-Moussa-Ider et al. (2016); Daddi-Moussa-Ider
& Gekle (2016); Daddi-Moussa-Ider et al. (2017)], point-like initial release conditions
and larger particle sizes [Vedel et al. (2014); Howard et al. (2016)], curved, oscillatory
and finite-length channels [Balasubramanian et al. (1997); Dorfman (2009); Giona et al.
(2009); Adrover (2011, 2013)], additional forces and potentials [Nacev et al. (2011);
Giona & Garofalo (2015)], ring geometries [Sankarasubramanian & Gill (1971); Ra-
machandra Rao & Deshikachar (1987); Jayaraman et al. (1998); Sarkar & Jayaraman
(2002); Mondal & Mazumder (2005)], the inclusion of an adsorbing-desorbing layer on
the channel walls [Purnama (1988); Phillips et al. (1995); Phillips & Kaye (1998); Ng
& Rudraiah (2008); Hansen et al. (2012); Berezhkovskii & Skvortsov (2013); Hlushkou
et al. (2014)], substance release from the channel walls [Adrover & Pedacchia (2013,
2014)], superhydrophobic walls [Bhaumik et al. (2015)], or dead ends [Dagdug et al.
(2014)]. Partially absorbing channel walls have been studied by Sankarasubramanian
& Gill (1973); Smith (1983); Davidson & Schroter (1983); Barton (1984); Mazumder
& Das (1992); Purnama (1995); Phillips et al. (1995); Balasubramanian et al. (1997);
Jayaraman et al. (1998); Sarkar & Jayaraman (2002); Ng (2006); Biswas & Sen (2007);
Balakotaiah (2008); Dorfman & Brenner (2008); Biswas & Sen (2008); Ng & Rudraiah
(2008); Mazumder & Paul (2011); Kumar et al. (2012); Dagdug et al. (2015); Skvortsov
et al. (2015) who found that, in general, the radially averaged solute concentration
becomes skewed due to absorption on the boundary. As pointed out by Ng & Rudraiah
(2008), however, the Taylor-Aris approach is applicable only in situations where the
boundary is weakly absorbing. The reason is fairly obvious: if any substance molecule
is immediately absorbed as soon as it touches the boundary, radial homogenization
which is the prerequisite for the Taylor-Aris method, becomes impossible. Regarding
the initial regime at short times, it has been shown that the width of cross-sectionally
averaged distributions shows anomalous diffusion [Lighthill (1966); Latini & Bernoff
(2001); Camassa et al. (2010)]. Muradoglu et al. (2007) and Muradoglu (2010) studied
solute dispersion between a train of moving bubbles focussing mainly on the exchange of
solute between the bubble compartments. All works mentioned in this paragraph have
in common that the substance at t = 0 appears instantaneously ”out of nothing”.

Here we consider the convection-diffusion problem for a substance which is released
instantaneously from the surface of a sphere flowing freely through a cylindrical channel
with perfectly absorbing walls. The physical situation that we have in mind is a drug
carrier particle which flows through a blood vessel and at a certain point in time
releases a pharmaceutical molecule. Once the molecule reaches the cylinder wall it reacts
immediately, mimicking absorption of the drug by endothelial cells. The two important
quantities are (i) the mean residence time τ1 defined as the time that the molecule
spends inside the blood stream before reacting with the boundary and (ii) the width of
the axial distribution σζ over which the substance is spread out when it is absorbed on the
boundary. The latter is not to be confused with the commonly studied Taylor-Aris like
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distribution width inside the flow (taken a at a fixed point in time) since different parts
of the substance reach the wall at different times. The width of this reaction position
distribution is important to estimate the intensity of the biochemical reaction which will
depend on the local concentration.

The situation investigated in this work is qualitatively different from classical Taylor-
Aris type of problems as it introduces an internal moving boundary (the sphere) and
as the flow field has a small, but non-negligible radial component. As we shall show in
this work, these differences lead in general to a reduction of the mean residence time
and to a reduction of the width of the reaction position distribution compared to a
simple estimate using the Taylor-Aris dispersion coefficient. We furthermore find a strong
dependence of τ1 and σζ on the release position. Substance molecules released around the
front are quickly dragged away from the sphere and disperse in a very similar manner as
a substance released in pure Poiseuille flow. If the substance is released around the tail of
the sphere the flow pushes the substance against the sphere leading to reduced residence
times similar to the situation between two cylinders. The result is a strongly peaked
distribution of the reaction position. At small Péclet numbers τ1 and σζ vary gradually
between these two extremes when the release position is moved over the sphere surface.
At intermediate and large Pe, however, the transition becomes very abrupt causing a
well-separated upstream and downstream dispersion regime. The most relevant release
position around the equator is always situated in the downstream regime where dispersion
is strongly affected by the presence of the sphere.

Finally, we investigate a scenario in which the substance is released continuously from
the sphere surface with a prescribed rate.

2. System setup

We consider a sphere travelling force free along the centerline of a cylindrical channel
as illustrated in figure 1 (a). In the following, R, θ and φ refer to spherical coordinates
while r, z and φ refer to cylindrical coordinates. At z → ±∞ the flow has a Poiseuille
profile with the center line velocity Umax. In such a situation the flow field U(r, z) has
been analytically computed by Leichtberg et al. (1976) and Yeh & Keh (2013) as sketched
briefly in Appendix A. The sphere is found to travel with a velocity Us which satisfies
1/2 < Us/Umax < 1. Thus, Us is larger than the average velocity Umax/2 at z → ±∞
and therefore, in the reference frame of the moving sphere, the net flow through the
gap between sphere and cylinder is negative as shown in figure 1 (c). Furthermore, the
upstream flow is separated into two regions: one for which streamlines starting at z →∞
pass by the sphere towards −∞ and one where the streamlines turn around and move
back towards +∞. The radial position of this separating streamline depends on the sphere
radius and is shown in figure 9 in Appendix B.

At time t = 0 a unit amount of substance is released on a ring with constant θ0

on the sphere surface. Subsequently, the substance is subject to molecular diffusion
and advection by the flow. We only consider the axisymmetric situation where the
concentration is averaged over the azimuthal angle φ. The concentration profile c(r, z, t)
is described by the convection-diffusion (Fokker-Planck) equation. Normalizing as usual
all length scales by the cylinder radius rc, all velocities by Umax and all times by r2

c/D
with the molecular diffusion coefficent D, the non-dimensional Fokker-Planck equation
reads

∂c(r, z, t)

∂t
= −∇ · j(r, z, t)
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= −PeU · ∇c(r, z, t) +∆c(r, z, t) (2.1)

where j is the local flux, ∆ is the axisymmetric Laplace operator and Pe = Umaxrc
D is

the Péclet number. The influence of nearby red blood cells is neglected here in order to
obtain a problem which can be treated by semi-analytical methods as described below.
The sphere is considered as non-reactive while the cylinder mantle (representing the
endothelial wall) is perfectly absorbing. This leads to the boundary conditions

jR = 0 at R = Rs (2.2)

c = 0 at r = 1 (2.3)

where 0 < Rs < 1 is the dimensionless sphere radius and jR = j · nsphere, with nsphere

being the normal vector of the sphere surface, denotes the flux through the sphere surface.
The initial concentration c0 for the substance released on a ring at θ0 can be written in
spherical coordinates as

c0(R, θ, φ) = δ(R−RS)δ(θ − θ0)
1

R

1

2πr
(2.4)

where r = R sin(θ) is the radius in cylindrial coordinates. The factors 1
R and 1

2πr are
introduced such that the integral over all space gives a unity amount of substance∫
V
c0(R, θ, φ)dV = 1.

Equation (2.1) is solved using a standard finite-volume scheme with upwind discretiza-
tion of the convective term. All results are verified by Brownian simulations as shown
in the Supporting Information. Figure 1 (d) shows an illustration of the development of
the concentration over time. Besides Pe, the other relevant dimensionless numbers are
the ratio between sphere and cylinder radii Rs (since rc = 1) and the release position on
the sphere surface expressed by the polar angle θ0 starting with θ = 0 at the front of the
sphere.

For drug delivery applications in the microcirculation, one would typically expect
a molecular diffusion coefficient D = kBT/(6πηa) between 10−11 and 10−10m2/s for
molecular radii a between 1 and 10 nm, a blood plasma viscosity of η = 1.2mPas and a
thermal energy of kBT = 1.38 · 10−23 · 300J. With a typical flow speed between 0.1 and
5 mm/s and channel radii between 5 and 15µm [Popel & Johnson (2005)], these values
lead to Péclet numbers between 2.5 and 4000.

3. Results

We will first investigate in detail the residence time and the reaction position when the
substance is released instantaneously on the equator (θ0 = π/2) of the sphere. Around
the equator the surface area is largest and thus this area contributes most strongly to a
surface average. In section 3.3 we then illustrate the effect of varying the release position
over the sphere surface. We briefly show some results for reflecting boundary conditions on
the cylinder wall in section 3.4. Section 3.5 considers continuous release of the substance
in time. We will treat here a sphere with radius Rs = 0.9 noting that the results remain
qualitatively similar for Rs = 0.6 and Rs = 0.8 as shown in the Supporting Information.

3.1. Residence times for equatorial release

We first investigate the residence time τ that the substance remains in the flow
before it is absorbed by the endothelial wall. In the context of reaction kinetics τ would
be denominated the first-passage time (see e.g. Hänggi et al. (1990)). The probability
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Figure 1. (a) Illustration of the considered system. (b) Analytical flow field for a sphere with
radius Rs = 0.9 travelling through a channel as computed by Leichtberg et al. (1976) and Yeh
& Keh (2013). (c) Flow field relative to the moving sphere. The flow through the gap is negative
relative to the sphere. (d) Concentration profiles if a unit amount of substance is released at the
equator at t = 0 with Pe = 100, displayed at t = 0.0005, 0.005, 0.0125 after release.

distribution p(τ) is defined as

p(τ) = 2π

∫ ∞
−∞

jr(r = 1, z, τ)dz (3.1)

where jr = j·ncylinder denotes the flux through the cylinder wall. Note that
∫∞

0
p(τ)dτ = 1

for an initially unit amount of substance.
In figure 2 (a) we show the probability distribution p(τ) of the residence time at

Pe = 100. In the presence of the sphere the distribution is rather narrow with a sharp
peak at τ ≈ 0.002. Comparing with the case when a substance is released at the same
position (r = 0.9) in pure Poiseuille flow the peak height is about twice as large. This
can be understood by the reflecting boundary conditions on the sphere surface.

The influence of the flow can be seen by varying the Péclet number as in figure 2 (b).
When removing the flow (Pe = 0), the distribution remains almost unaltered. Increasing
the flow to Pe = 1000 slightly smears out the distribution, but in general the effects
of Pe on the residence time distribution are not as strong as they are on the reaction
position as will be shown below.

This is also seen in figure 2 (c) where the mean residence time τ1 is plotted as function
of Pe for the two situations with and without sphere shown in figure 2 (a). In the
absence of the sphere τ1 (which is scaled by the radial diffusion time r2

c/D) is constant
and independent of Pe since the pure Poiseuille flow has no radial components. In the
presence of the sphere, however, this simple scaling breaks down and two plateaus at low
and high Pe can be discerned. Interestingly, even for very large Pe the mean residence
time in the presence of the sphere does not reach the one without the sphere. This
observation may seem surprising at first since the very fast flow should quickly pull the
substance away from the sphere leading to unhindered diffusion. Inspection of figure 1 (c)
however shows that the effect can be explained by two characteristics of the flow profile
in the region behind the sphere into which the substance is dragged: (i) the radial flow is
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Figure 2. (a) Residence time probability distribution at Pe = 100 for substance released from
the equator of a flowing sphere compared to release at r = 0.9 in pure Poiseuille flow. (b) While
lowering the flow speed to Pe = 0 has only a slight effect, increasing it to Pe = 1000 leads to a
reduction of the peak height. (c) Without sphere the mean residence time τ1 is independent of
Pe, while in the presence of the sphere two plateau values at small and high Pe can be observed.
Dotted lines represent analytical solutions for diffusion between two infinitely long cylinders at
Pe = 0.

directed outwards and will thus push the substance in direction of the cylinder wall and
(ii) if the solute molecule slightly diffuses towards the channel center, the flow pushes it
back onto the reflecting surface of the sphere. We will come back to this point in more
detail in section 3.3.

We finally give, for Pe = 0, an estimate of the mean residence time using a theoretical
development for diffusion of a substance between two infinitely long concentric cylinders
with radii 1 and ri < 1. As shown by Szabo et al. (1980) and Deutch (1980) (see also
the review by Hänggi et al. (1990)), the mean residence time when starting at r can be
obtained from the solution to the one-dimensional differential equation

d2τ1,cyl(r)

dr2
= −1 (3.2)

with boundary conditions

dτ1,cyl

dr
= 0 at r = ri (3.3)

τ1,cyl = 0 at r = 1. (3.4)

Taking the radius of the inner cylinder the same as the sphere radius, ri = Rs = 0.9, the
analytical solution of equation (3.2) yields τ1,cyl = 0.0048. If the sphere is removed by
setting ri = 0 but the substance is still released at r = 0.9, equation (3.2) can be used
to compute the corresponding mean residence time τr=0.9 = 0.0475. Both values are in
very good agreement with the numerical solution of the full Fokker-Planck equation at
Pe = 0 as can be seen by the dotted lines in figure 2 (c) in the presence/absence of the
sphere. Even up to fairly large Pe ≈ 100 the solute dispersion in the gap between the
sphere and the wall is fairly uninfluenced by the flow.

We finally consider the amount of substance remaining in the cylinder at a given time t
after release. This quantity can be calculated directly from the residence time distribution
as

C(t) = 1−
∫ t

0

p(τ)dτ. (3.5)

The result in figure 3 shows that (i) the presence of the sphere strongly accelerates the
clearance of substance from the channel and (ii) stronger convection slows down, albeit
only slightly, the clearance process.
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Figure 3. The amount of substance remaining in the channel after a time t.

3.2. Reaction position for equatorial release

We now turn to investigate the probability distribution of the reaction position ζ on
the cylinder wall which is defined as

p(ζ) = 2π

∫ ∞
0

jr(r = 1, ζ, t)dt (3.6)

which is again a normalized quantity with
∫∞
−∞ p(ζ)dζ = 1. While the mean reaction

position is rather irrelevant due to the translational invariance along the z-direction, the
second central moment (standard deviation) σζ represents an important quantity as it
determines how much the biochemically active substance is diluted before it reaches the
endothelium. A small σζ implies the existence of a hot spot with a high concentration.

Figure 4 (a) shows the distribution p(ζ) for substance released on the equator of a
flowing sphere compared to the case without sphere. The effect of the sphere is to narrow
the distribution due to the reflecting boundary condition on the sphere surface which
closely mirrors the reduced residence time shown in figure 2 (a). As can be seen in
figure 4 (b) the influence of the flow speed on the reaction position ζ is much more
pronounced than on the residence time τ . At Pe = 0 the system possesses a symmetry
about the z = 0 plane and accordingly the distribution turns out to be symmetric and
rather narrow. At Pe = 100, the distribution is somewhat smeared out with a strong
tendency to higher ζ due to advection by the flow. At Pe = 1000, the peak height lowers
quite dramatically and the distribution is much more smeared out.

Indeed, as can be seen by a systematic investigation of the standard deviation σζ
as function of Pe shown in figure 4 (c), σζ is almost uninfluenced by the flow until
Pe ≈ 100, but then rises sharply and finally reaches a regime where it scales linearly
with Pe. Without the sphere the qualitative picture is the same, yet the transition to
the linear regime occurs much earlier and more smoothly.

We now draw a connection to the classical Taylor-Aris problem of dispersion in a
cylinder with reflecting boundary conditions. The Taylor-Aris solution considers times
which are large compared to the diffusive time scale r2

c/(4D) which in our dimensionless
units becomes τdiff = 0.25, and at which therefore all radial concentration differences are
negligible. The concentration then becomes a function of z only which spreads with a
(dimensionless) effective dispersion coefficient

DTA =

(
1 +

Pe2

192

)
. (3.7)

Although not being applicable to perfectly absorbing boundaries, the Taylor-Aris solution
nevertheless reproduces one of the characteristic features observed in the present study,
namely the linear scaling of σζ with Pe in the limit of large Pe. To show this, we use DTA

in a regular diffusion equation and compute the distribution width inside the flow σz at
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Figure 4. (a) Probability distribution of the reaction position ζ for substance released at
Pe = 100 on the equator of a flowing sphere compared to release at r = 0.9 in pure Poiseuille
flow. (b) Lowering the flow speed to Pe = 0 sharpens the distribution, while increasing it to
Pe = 1000 leads to a significant reduction of the peak height. (c) Width of the reaction position
distribution as function of Pe. For large Pe the width σζ grows linearly with Pe in the presence or
absence of the sphere. This behavior is similar to the Taylor-Aris solution. In absolute numbers,
the presence of the sphere reduces the width by a factor of about 7 compared to the Taylor-Aris
solution in the limit of small Pe and by a factor of 2.5 in the limit of large Pe.

τdiff . The result is shown as the dashed line in figure 4 (c) and agrees qualitatively with
our numerical data at large Pe. Nevertheless, in the large Pe regime, the Taylor-Aris
solution overestimates the width by a factor of about 2.5. At low Pe, the deviation is
even larger. This demonstrates that the presence of the drug releasing sphere is important
over the entire range of Péclet numbers.

3.3. Influence of release position

We now turn to investigate changes to the above observations when the substance is
released at other positions than the equator. For this, we denote the positions by their
polar angle starting with θ0 = 0 at the front of the sphere as illustrated in figure 1 (b).

In figure 5 (a) the mean residence time is shown as function of the release position.
At Pe = 0 the system is symmetric around θ0 = π/2 with the smallest τ1 at θ0 = π/2,
i.e., for equatorial release. At higher Pe the distribution becomes strongly asymmetric
and at Pe = 1000 separates clearly into two regions with almost constant values. In the
upstream region for θ0 < θc ≈ 1.1, the mean residence time almost equals that of free
diffusion in the absence of the sphere while for θ0 > θc the mean residence time decreases
abruptly to around τ1 ≈ 0.009 and is thus only slightly larger than the theoretical value
for diffusion between two cylinders τcyl = 0.0048 computed from equation (3.2). A similar
behavior is seen for σζ in figure 5 (b). This separation in two regions can be understood
from the appearance of the separating streamline in front of the sphere and the flow
properties in figure 1 (c): (i) For large z the Poiseuille profile needs to be recovered
which implies that the velocity on the central axis increases from Us to 1 when going
away from the front of the sphere. Consequently, a solute molecule close to the front of
the sphere will be dragged away from the sphere. (ii) Due to the symmetry of the flow
profile, the same increase from Us to 1 occurs when going to z = −∞. Thus, a solute
molecule released around the tail will, instead of being dragged away, be pushed towards
the sphere. This asymmetry in solute behavior is the cause of the different behavior in
the two regions. (iii) Since the net flow through the gap between sphere and cylinder
wall is negative relative to the sphere, a particle released at a position θ0 even slightly
smaller than π/2, but still above the separating streamline, will be dragged into the
region behind the sphere. This latter property explains why the transition between the
two regions is not located strictly at π/2, but at the smaller value of θc ≈ 1.1.
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Figure 5. (a) Mean residence time as function of the release position for Pe = 0, Pe = 100 and
Pe = 1000. While at Pe = 0 the situation is perfectly symmetric, at Pe = 1000 an upstream
(θ0 < θc ≈ 1.1, left) and a downstream region (θ0 > θc, right) can be distinguished. Analytical
solutions for free diffusion and diffusion between two cylinders are shown as dotted lines and
approximate surprisingly well the behavior in the two regions. (b) The width of the reaction
position shows similar behavior. (c) Mean distance from the moving sphere centre for release on
the equator, the front and the tail.

We further illustrate this behavior by picking the front (θ0 = 0) and the tail (θ0 = π)
of the sphere as the most obvious prototypes for the upstream and downstream regions.
Figure 5 (c) shows the mean distance in flow direction from the (moving) sphere center

ds(t) =

∫
V

c(x− Ust, y, z, t) (x− Ust) dV (3.8)

as a function of time. For front release the substance is advected away from the sphere in
positive direction, while for tail release it moves much slower and away from the sphere in
negative direction. Apart from a short initial transient substance released at the equator
follows the same behavior as tail release.

We now turn to investigate the influence of the flow strength on τ1 and σζ for front
and tail release. Since both positions are located on the central cylinder axis, we discern
the influence of the sphere by comparing to the case where the substance is released
on the axis in pure Poiseuille flow. Figure 6 (a) shows the mean residence time τ1 for
these three situations. In pure Poiseuille flow, the value is simply constant and equal
to τdiff = 0.25. As reasoned above, a substance released at the front will quickly be
dragged away from the sphere and then experience free diffusion such that τ1 quickly
reaches a plateau identical to the one for free diffusion. For tail release, the situation is
very different. A rather strong influence of the Péclet number is seen reducing the mean
residence time from ≈ 0.25 at Pe = 0 by almost an order of magnitude at Pe = 105. Near
the sphere tail the substance is strongly pressed against the sphere by the incoming flow.
Furthermore, in the downstream region a small, but non-negligible outward radial flow
is present which further accelerates the substance’s motion towards the cylinder wall.
These two effects explain the Pe-dependence of τ1 in the downstream region.

In an experimental situation it will be difficult to control the precise point of substance
release or, equivalently, substance molecules may be released homogeneously over the
entire sphere surface. We therefore calculate the mean residence time and the width of
the reaction position for a weighted average over release angles 0 < θ0 < π covering the
entire sphere surface. This is shown by the dashed black lines in figure 6 and demonstrates
the non-negligible influence of the sphere in the present problem.
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Figure 6. (a) Mean residence time as function of the Péclet number for release on the front and
tail of a flowing sphere compared to release on the axis in pure Poiseuille flow and for release on
the equator. While substance released at the front behaves very much like substance released in
pure Poiseuille flow, a significant influence of the sphere is found for substance released around
the tail and the equator. (b) The width of the reaction position shows similar behavior.

3.4. Reflecting boundaries

We now investigate the influence of the sphere if the channel walls are reflecting, i.e.
we replace the boundary condition (2.3) by

jr = 0 at r = 1. (3.9)

In this situation, the mean residence time τ1 becomes infinite and the reaction position is
undefined. We therefore choose the time-dependent width (second central moment) σz(t)
of the cross-sectionally averaged concentration inside the flow as our quantity of interest.
This quantity is similar, but not identical, to σζ for the absorbing channel and allows
us to make comparison to a number of earlier works, namely those by Taylor (1953)
and Aris (1956) for long and by Latini & Bernoff (2001) for short and intermediate
times. Figure 7 (a) shows σz(t) as a function of time for release on the axis in an empty
channel. The dotted, dashed and solid red lines denote purely diffusive scaling σz =

√
2t,

the anomalous prediction by Latini & Bernoff (2001) σz =
√

8/3Pet2 and finally the
classical Taylor-Aris scaling σz =

√
2Defft, respectively. We find perfect agreement with

those three predictions. Considering next the situation where the substance is released
on the equator of the sphere, we find that for large times the Taylor-Aris regime is
recovered. However, the dimensionless times required are of the order of 10 which is much
higher than the mean residence times τ1 found in the case of absorbing boundaries. This
underlines again that the Taylor-Aris scenario is not applicable for strongly absorbing
boundaries. At short times, the presence of the sphere is seen to accelerate the deviation
from the purely molecular diffusive regime which can be attributed to the rather large
shear rates in the vicinity of the equator (cf. figure 1 (c)).

In figure 7 (b) we show release from the front and tail positions of the sphere. Similarly
as before with absorbing walls, we find that substance released from the front is quickly
dragged away from the sphere and therefore the situation without sphere is recovered even
before the Taylor-Aris regime is reached. For tail release, the sphere influence is much
more pronounced. At short times, there exists a regime during which the dispersion is
almost zero illustrating the pushing of the substance towards the sphere by the flow.
Afterwards, a sharp increase in the width is seen when the substance starts to diffuse
radially away from the sphere surface. Finally, the Taylor-Aris regime is recovered, albeit
more slowly than for release from the front.

3.5. Continuous release

In this final part, we consider a sphere continuously releasing substance at a rate
w. As the substance molecules are non-interacting, the residence time distribution for
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Figure 7. Width of the cross-sectionally averaged distribution inside the flow for a reflecting
cylinder wall. The green line in (a) shows axial release in an empty channel and is in perfect
agreement with three regimes predicted by Latini & Bernoff (2001) (red lines, see main text).
The blue line is for a substance released from the equator of a flowing sphere. (b) Substance
released from the front and tail of a flowing sphere.

a single molecule is identical to the instantaneous release studied above and given by
p(τ). As a novel observable in the continuous release scenario, we investigate the time-
dependent absorption rate observed at a fixed position as the sphere passes by. Without
restriction of generality we choose the observation position at z = 0 and consider a
sphere having started its trajectory at t → −∞, passing the observation point at t =
0 and continuing its trajectory until t → ∞. Due to the linearity of the underlying
equation (2.1), the continuous release scenario can be studied in a Green’s function
like approach by superposing data obtained for the instantaneous release. For this, we
introduce the flux j∗ through the entire cylinder circumference (per unit length in z
and per unit time) which is observed at z, t if the sphere has released a unit amount of
substance at z0, t0. This can be related to our previous notation by integrating the flux
over the azimuthal angle which (for a normalized cylinder radius of 1) yields

j∗(z0, z, t0, t) = 2πjr(z − z0, t− t0). (3.10)

The total flux per unit length and time at z = 0 is then given by superposing the
contributions from all releases that have taken place since t→ −∞:

a(t) = w

∫ t

−∞
j∗(Ust

′, 0, t′, t)dt′ (3.11)

= 2πw

∫ t

−∞
jr(−Ust′, t− t′)dt′. (3.12)

Substituting t̂ = t− t′ yields finally

a(t) = 2πw

∫ ∞
0

jr(−Us(t− t̂), t̂)dt̂ (3.13)

which can conveniently be computed using the instantaneous release condition on a ring
studied in the previous sections. Due to mass conservation in a very long cylinder at
steady state the total amount of substance absorbed by per unit length of channel wall
must equal the amount of substance released per unit length by the sphere, i.e.∫ ∞

−∞
a(t)dt =

w

Us
. (3.14)

In figure 8 (a) we show a(t) for the same parameters as in the instantaneous release
scenario (Rs = 0.9). We first note that there is a strong asymmetry around the passing
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Figure 8. The absorption rate per unit length and time observed at z = 0 for a sphere passing at
t = 0. In this scenario, the sphere continuously releases substance. (a) The presence of the sphere
sharpens the signal. (b) Increasing Pe leads to a smaller peak height in line with equation (3.14).

moment t = 0. Just before t = 0 the signal rises sharply due to substance diffusing up
front relative to the approaching sphere. The maximum signal is reached for t slightly
larger than 0 and then decays slowly which is due to convection of the substance into
the region behind the sphere as described in detail above. Comparing to a hypothetical
continuous release from a moving ring source (without sphere), we observe that the signal
picked up at z = 0 becomes narrower due to the presence of the sphere. This is fully in
line with the results derived above for the instantaneous injection.

Finally, in figure 8 (b) we show a comparison for three different Péclet numbers. For
Pe = 0 the sphere does not move and therefore the signal has no time dependence.
Increasing Pe from 100 to 1000 leads to a smaller and sharper peak.

4. Conclusion

We studied the dispersion of a solute released from the surface of a sphere flowing freely
through a cylindrical channel with absorbing boundary conditions on the channel wall.
Since the sphere velocity is slower than the center velocity of the undisturbed Poiseuille
flow at z → ±∞ two regimes can be distinguished. In the upstream regime the solute is
released around the front of the sphere and then quickly washed away from the sphere
by the flow and free diffusion is recovered at large Péclet numbers. In the downstream
regime the solute is pushed towards the sphere leading to a strong reduction in residence
time and a peaked reaction position distribution. These effects can be attributed to the
reflecting boundary on the sphere surface but also to the radially outward component of
the flow field behind the sphere which acts to push the solute towards the channel wall.
Even at very large Pe, free diffusion is not recovered in the downstream regime. The
transition between both regimes is smooth at low Pe and becomes increasingly sharper
at higher Pe. The important case of equatorial release which incorporates the largest
surface area always belongs to the downstream regime.

Acknowledgements

I thank the Volkswagen Foundation for financial support in the framework of the
Lichtenberg programme. I acknowledge the Gauss Center for Supercomputing e.V. for
providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercom-
puting Center.



Dispersion around a sphere 13

R
s

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
rsep

Rs

Figure 9. Radial position of the separating streamline as a function of sphere radius..

Appendix A. Analytical computation of the flow-field around a
sphere travelling through a channel

Here we briefly recall the calculation of the axisymmetric flow field when a sphere
travels force-free along the center of a cylindrical channel. The details are given by
Leichtberg et al. (1976) and Yeh & Keh (2013). The key idea is to find a general solution
to the Stokes equation satisfying exactly the boundary conditions at infinity and on
the cylinder surface, but not necessarily on the sphere surface. The free constants in
this solution as well as the sphere velocity are then determined by enforcing the no-
slip condition on a set of points on the sphere surface. The number of such collocation
points determines the accuracy of the result. We note here that the second occurence of

G
−1/2
n+1 (κ) in Eq. (A.1) of Yeh & Keh (2013) should actually read G

−1/2
n (κ)

Appendix B. Separating streamline

In figure 9 we show the radial starting position of the separating streamline rsep at
z → ∞ as a function of the sphere radius Rs. Both quantities are very similar over the
whole range of sphere radii.
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