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When an elastic object is dragged through a viscous fluid tangent to a rigid boundary, it
experiences a lift force perpendicular to its direction of motion. An analogous lift occurs
when a rigid symmetric object translates parallel to an elastic interface or a soft substrate.
The induced lift force is attributed to an elastohydrodynamic coupling that arises from the
breaking of the flow reversal symmetry produced by the elastic deformation of the translating
object or the interface. Here we derive explicit analytical expressions for the quasi-steady-
state lift force exerted on a rigid spherical particle translating parallel to a finite-sized
membrane exhibiting a resistance toward both shear and bending. Our analytical approach
applies the Lorentz reciprocal theorem so as to obtain the solution of the flow problem
using a perturbation technique for small deformations of the membrane. We find that the
shear-related contribution to the normal force leads to an attractive interaction between the
particle and the membrane. This emerging attractive force decreases quadratically with the
system size to eventually vanish in the limit of an infinitely extended membrane. In contrast,
membrane bending leads to a repulsive interaction whose effect becomes more pronounced
upon increasing the system size, where the lift force is found to diverge logarithmically for
an infinitely large membrane. The unphysical divergence of the bending-induced lift force
can be rendered finite by regularizing the solution with a cutoff length beyond which the
bending forces become subdominant to an external body force.
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I. INTRODUCTION

The coupling between soft boundaries and viscous flows plays an important role in many physical
phenomena and finds applications in a large variety of fields in engineering and science [1]. Notable
examples include the emergence of surface-tension-driven coalescence of flexible structures [2],
the deformation of slender elastic filaments during sedimentation [3], the elastohydrodynamic wake
generated in a thin lubricated elastic sheet [4–6], the formation of biofilm streamers in microchannels
[7–10], the propulsion of elastica in a viscous fluid [11,12], and the elastocapillary soft leveling
of thin viscous films on elastic substrates [13]. Elastohydrodynamic effects may have significant
consequences in a wide range of biological and physiological processes, ranging from the rheology
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of a suspension of red blood cells in microcapillaries [14–19] to the lubrication of synovial joints in
the limbs [20–22].

In low-Reynolds-number hydrodynamics, viscous forces are much larger than inertial forces,
and the motion of suspended particles is described by the linear Stokes equations [23,24]. Because
of the long-range nature of the hydrodynamic interactions, the motion of suspended particles in
a viscous flow is strongly altered by confining interfaces. As an example, the reversibility of the
Stokes equations implies that no lift force is exerted on a rigid symmetric object, such as a sphere or
a circular cylinder, that translates parallel to a planar hard wall [25,26]. However, this reversibility can
be broken by introducing nonlinear effects due to inertia [27–29], viscoelasticity of the surrounding
fluid [30–33], or the elastic nature of either or both of the translating object and the interface. For
instance, a capsule that is enclosed by an elastic membrane in a wall-bounded shear flow experiences
a net noninertial lateral migration in which the lift velocity increases with the shear rate and decreases
with distance from the wall [34–36].

Theoretically, the elastohydrodynamic-induced lift force has been addressed thoroughly in the
lubrication limit [37–44], showing that there exists an optimal combination of geometric and
material parameters that maximizes the lift force. Earlier research considered the elastohydrodynamic
collision of two spheres via asymptotic analysis [45,46] and more recently the motion of two elastic
bodies at relative speed [41], the lift force experienced by a small sphere translating and rotating near
a soft wall [47,48], and the lift force induced between polymer-bearing surfaces [37]. Using a local
linear pressure-displacement model for the deformable wall, the transient behavior has also been
studied [49]. The influence of a deformable substrate on the dynamics of a fluid vesicle moving in
its vicinity has been numerically studied, showing that the optimal elastic modulus for the lift force
lies within the physiological range [50]. Moreover, it has been shown that reciprocal motion near
a deformable interface can circumvent Purcell’s scallop theorem [51] and lead to a net propulsion
of swimming microorganisms in low-Reynolds-number locomotion [52]. Further, it has been shown
that motion of a solid sphere [53] or a viscous drop [54] parallel to a deformable fluid-fluid interface
(without surface elasticity) results in a lateral migration of the particle in translation parallel to the
interface.

More recently, the motion of a negatively buoyant cylinder in the vicinity of an inclined thin
compressible elastic wall has been investigated using elastohydrodynamic lubrication theory [55],
showing that different scenarios of motion occur that relate sedimentation and sliding and spinning
motion modes. Corresponding experiments that have been carried out near a soft incline [56] have
reported that the translating cylinder further undergoes a spontaneous steady-state rotation. This
behavior has been explained theoretically using a higher order asymptotic analysis in the lubrication
limit [57]. Meanwhile, the normal displacement of a spherical particle sedimenting under gravity
along a vertical elastic membrane has been measured experimentally [58] where good agreement
has been obtained with an analytical model based on lubrication theory. It has been suggested that
the observed lift effect can be utilized in the design of size-sorting processes and separation devices.

The slow motion of a spherical solid particle moving near a planar elastic membrane possessing a
resistance to shear and bending has been investigated theoretically using a far-field model [59–62]. It
has been demonstrated that the elastic nature of the membrane endows the system with memory and
leads to a long-lasting anomalous subdiffusive behavior on nearby particles [59]. Further theoretical
investigations have been performed for particles near membranes with curved geometries [63,64],
showing that shear usually manifests itself in a more pronounced way compared to bending. However,
the latter studies were limited to the effect of the membrane on the drag force and have not examined
the lift force arising from the nonlinear nature of the elastohydrodynamic problem. The goal of
this paper is to quantify this lift effect and derive explicit analytical expressions for the induced
nonlinear normal force. We find that the lift force is repulsive due to bending while the shear-related
contribution to the normal force is found to have an opposite effect. The latter, however, decays
quadratically with increasing system size and vanishes for an infinitely extended membrane.

In the remainder of this paper, we introduce in Sec. II the elastohydrodynamic problem of a solid
sphere translating tangent to an elastic membrane and state the governing equations of fluid motion
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FIG. 1. Illustration of the elastohydrodynamic problem. A solid sphere of radius a located a distance h

above an elastic membrane of radius b. In the undeformed state, the membrane is extended in the plane z = 0.
The frame of reference attached to the center of the sphere translates at a constant velocity V P with respect to the
laboratory frame. The fluid on both sides of the membrane has the same dynamic viscosity η. The figure in the
inset is a top view of the frame of reference associated with the particle where (r, φ) are the polar coordinates.

in addition to the underlying boundary conditions. We then present in Sec. III the reciprocal theorem
for Stokes flow and derive a general formula for the normal force resulting from an arbitrary velocity
distribution prescribed for a given reference configuration of the membrane. We then use this result to
calculate the bending- and shear-related contributions to the normal force in Sec. IV, where analytical
expressions are obtained. A regularization solution with the inclusion of a body force is discussed
in Sec. V. Concluding remarks are contained in Sec. VI.

II. THEORETICAL DESCRIPTION

We consider the quasisteady motion of a solid spherical particle of radius a, initially located at
position z = h above a finite-sized elastic membrane of radius b extended in the xy plane; the z

direction is normal to the plane. The particle translates at a constant velocity V P = VPex parallel to
the membrane, as measured in the laboratory reference frame, schematically illustrated in Fig. 1. We
examine the system behavior in the far-field limit such that a � h. The fluid on both sides of the
membrane is assumed to be Newtonian and the flow is incompressible, characterized by a constant
dynamic viscosity η. The membrane is modeled as a two-dimensional sheet made by a hyperelastic
material that exhibits resistance toward shear and bending. Membrane shear elasticity is described
by the well-established Skalak model [65], which is often used as a practical model for red blood
cell membranes [66–68]. The Skalak model is characterized by the shear modulus κS and the area
dilatation modulus κA, which are related by the coefficient C := κA/κS. The membrane resistance
toward bending is described by the Helfrich model [69–71], with the corresponding bending modulus
κB. For small membrane displacements away from a plane, the linearized traction jump equations
stemming from these two models are given by [59,72]

−κS

3
[�‖uβ + (1 + 2C)ε,β] = �fβ , β ∈ {x, y} , (1a)

κB�2
‖uz = �fz on xS , (1b)
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where u is the displacement vector of the material points of the membrane relative to their initial
positions, and xS = xex + yey denotes the position vector of the material points relative to the planar
configuration of reference. Here �‖ denotes the Laplace-Beltrami operator [73], defined for a given
scalar function w as �‖w := w,xx + w,yy , ε := ux,x + uy,y is the dilatation, and � f stands for the
traction jump across the membrane. Note that a comma in indices means a partial spatial derivative.

It is convenient to describe the present problem in a translating reference frame attached to the
sphere, in which the fluid far away from the sphere translates with velocity −V P. The fluid velocity
and stress fields, v(x) and σ (x), respectively, satisfy the continuity and Stokes equations [23]

∇ · v = 0 and ∇ · σ = 0 , (2)

and the boundary conditions

v|SP = 0 and v|S∞ = −V P , (3)

where S∞ is a bounding surface at infinity and SP denotes the surface of the particle. Moreover,
σ = −p I + 2ηE is the fluid stress tensor with p denoting the pressure and E = 1

2 (∇v + ∇vT) is
the rate-of-strain tensor. The traction jumps appearing on the right-hand side of Eqs. (1) are related
to the stress tensor via the relation �fβ = σzβ (z = 0+) − σzβ (z = 0−), for β ∈ {x, y, z}.

The no-slip boundary condition at the deformed membrane provides a direct link between the
membrane displacement u and fluid velocity v. Specifically,

Du
Dt

:= ∂u
∂t

+ v · ∇‖u = (v + V P)|xS+u(xS ) , (4)

where ∇‖ = ex∂x + ey∂y is the tangential gradient operator taken along the membrane. In this paper,
we consider a small but finite deformation amplitude relative to the distance between the particle and
the membrane (|u| � h). Then, the no-slip condition (4) can be mapped onto the reference plane
xS by using a Taylor expansion to write v|xS+u(xS ) = v|xS + u · ∇v + O(|uu : ∇∇v|). In the limit
of a quasisteady membrane displacement ( ∂ u

∂t
= 0) as measured in the translating reference frame,

substituting the above expansion into (4) gives

v = −V P + V W on xS, where V W = v · ∇‖u − u · ∇v , (5)

which an effective boundary condition prescribed on a planar (undeformed) wall.

III. RECIPROCAL THEOREM

Before attempting to solve the problem at hand, of a sphere translating tangent to an elastic
membrane, we introduce a related problem, namely that of a particle of surface SP translating with
velocity V P tangent to a planar wall SW with a prescribed surface velocity distribution V W(xS),
with xS ∈ SW. Note that both V P and V W may be arbitrarily oriented relative the the surface SW.
We are interested in the relationship between the hydrodynamic force acting on such a particle, its
translational velocity V P, and the prescribed surface velocity V W(xS).

An explicit expression for the force on the particle may be obtained using the Lorentz reciprocal
theorem for Stokes flows. To this end, we define a model problem wherein a particle translates at
velocity V̂ P relative to a rigid no-slip wall in fluid that is quiescent far away from the sphere (as
measured in the laboratory reference frame). In the frame of reference of the sphere, the flow in the
model problem is described by a velocity field v̂ and a stress field σ̂ that satisfy the Stokes equations
and similar boundary conditions as above, but involving hatted quantities and with V W(x) being
absent. Specifically, v̂(x ∈ SP) = 0, v̂(x ∈ SW) = −V̂ P, and v̂(x → ∞) = −V̂ P.

The Lorentz reciprocal theorem for Stokes flows [23,74] states that∫
SP+SW+S∞

n · σ · v̂ dS =
∫

SP+SW+S∞
n · σ̂ · v dS . (6)
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On applying the boundary conditions and using the definition for the hydrodynamic force,

FH =
∫

SP

n · σ dS = −
∫

SW+S∞
n · σ dS , (7)

we obtain

−F̂
H · V P + FH · V̂ P =

∫
SW

n · σ̂ · V W dS , (8)

where F̂
H

is the hydrodynamic force in the model problem. The above expression lets us compute
the projection of the hydrodynamic force on the particle in the direction of the arbitrarily chosen
vector V̂ P for a specified V W(xS), assuming that the stress field in the model problem is fully known.

We now specialize the general expression above to the case of a spherical particle translating
parallel to a planar wall, V P = VPex . Here, the wall coincides with the xy plane and the z axis points
toward the particle center, as shown in Fig. 1. In particular, we are interested in the wall-normal
component of the force acting on the sphere (F H

⊥ = FH · ez). For V̂ P = V̂Pez, the first term in (8)
drops out (here n = ez since SW is a plane), leading to

F H
⊥ = 1

V̂P

∫
SW

n · σ̂ · V W dS = 1

V̂P

∫
SW

(σ̂zzVWz + σ̂zxVWx + σ̂zyVWy ) dS. (9)

Whether the components of the surface velocity V W contribute to the normal force can be established
by their spatial symmetry relative to components of ez · σ . For example, σ̂zz is an even function of
both x and y due to the axisymmetry of the model problem; therefore normal velocity distributions
VWz(x, y) that share this symmetry can contribute to F⊥. Similarly, VWx (x, y) distributions that are
odd in x and even in y, and VWy (x, y) distributions that are odd in y and even x can contribute to
a normal force. As we will show below, all three symmetries are realized when a sphere translates
parallel to a membrane that resists stretching and bending. While it has been reported in other contexts
[37–39] that out-of-plane deformation (here mediated by bending) can produce a repulsive normal
force, we will show that an in-plane stretching has an opposite effect. We will quantify these findings
in subsequent sections.

IV. CALCULATION OF THE NORMAL FORCE

A. Rescaling

Having derived a general reciprocal relation for the normal force on a particle translating tangent
to a surface with a prescribed surface velocity VW (xS ), we now compute specific results for the
force when this surface velocity is a result of the elasticity of the membrane. For that purpose,
it is convenient to rescale the system properties in the main and model problems by introducing
dimensionless variables, which we denote by a star.

We observe from (5) that the velocity scale at the membrane is VP. However, this scale corresponds
to uniform translation (due the choice of reference frame), and is therefore not associated with
velocity gradients or fluid stresses. The fluid stress is a result of the disturbance flow due to the
translating particle, which, near the membrane, has a characteristic velocity VPa/h that decays over
a characteristic length scale h. The stress acting on the membrane therefore has the characteristic scale
ηVPa/h2. Analogous relations apply for the model problem. Accordingly, we define dimensionless
variables

v = aVP

h
v	, σ = aηVP

h2
σ 	 , v̂ = aV̂P

h
v̂	, σ̂ = aηV̂P

h2
σ̂ 	 , (10)

and rescale all lengths of the problem by h. In this paper, we focus our attention on the far-field limit
where a/h � 1. By examining the boundary conditions prescribed at the membrane in (1), it can be
noted that the linearized tangential traction jumps at the membrane are imposed by shear resistance
only and involve second-order derivatives of the in-plane displacements. In contrast, the linearized
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normal traction jump is imposed by bending resistance only and involves fourth-order derivatives of
the out-of-plane displacement. Based on these considerations and using the stress scale ηVPa/h2,
we define the rescaled membrane displacements as follows:

ux = aηVP

κS
u	

x , uy = aηVP

κS
u	

y , uz = aηVPh
2

κB
u	

z . (11)

In the limit of small membrane deformation (|u| � h), the present elastohydrodynamic problem
can conveniently be solved perturbatively. We define the perturbation parameters

�S = aηVP

hκS
, �B = aηVPh

κB
, (12)

which can be regarded as dimensionless compliances associated with the membrane resistance toward
shear and bending, respectively. Using (11) and (12), we can write the membrane displacement vector
as

u = h�S(u	
xex + u	

yey ) + h�Bu	
zez. (13)

Note that �B = 0 for an idealized membrane with pure shear (such as that of an artificial capsule
designed for drug delivery) and �S = 0 for a membrane with pure bending (such as that of a fluid
vesicle or a liposome). For a particle-membrane distance h = (κB/κS)1/2 both dimensionless numbers
�S and �B are equal. This corresponds to the situation where shear and bending equally manifest
themselves in the system [61].

B. Perturbation solution

In order to obtain approximate analytical expressions for the induced normal force F H
⊥ acting on

the translating particle, we will focus our attention to the limit of small membrane deformation, so
that �S � 1 and �B � 1. We can thus expand perturbatively the velocity and displacement fields in
power series of the dimensionless numbers �S and �B. To leading order, the rescaled displacement
and velocity fields can be written using a regular perturbation expansion as

u	 = u	
0 + O(�B, �S), v	 = v	

0 + O(�B, �S) , (14)

where u	
0 and v	

0 are the solutions of the zeroth-order problem corresponding to a planar undeformed
membrane. From the boundary condition (5) imposed at the undisplaced (planar) membrane, it
follows readily that v	

0 = −V 	
P = −(h/a)ex on the planar surface of reference xS. Substituting

Eqs. (14) into (9) and keeping only the leading-order terms in �B and �S, the hydrodynamic force
exerted on the particle translating parallel to the membrane simplifies to

F H
⊥ = −ηaVP

∫
SW

[
�B

{
∂uz

	
0

∂x	
σ̂ 	

zz + a	u	
0z

(
∂vx

	
0

∂z	
σ̂ 	

zx + ∂vy
	
0

∂z	
σ̂ 	

zy

)}
+ �S

{
∂ux

	
0

∂x	
σ̂ 	

zx + ∂uy
	
0

∂x	
σ̂ 	

zy

}]
dS	, (15)

where a	 = a/h. This is a central result of our paper that we evaluate below. It is worth noting
that on xS, both of the partial derivatives ∂v	

0/∂x	 and ∂v	
0/∂y

	 vanish. Because of the decoupled
nature between the shear and bending deformation modes, the solution of the flow problem near a
membrane endowed simultaneously with both shear and bending resistances can readily be obtained
via linear superposition of the two independent shear and bending contributions.

Consequently, the normal force is found to scale quadratically with the particle velocity on account
of the fact that �B and �S are linear in VP. This situation is in contrast to that of the drag force which
is known to scale linearly with velocity. Notably, the normal force equals to zero near an undeformed,
planar wall, which corresponds to an elastic membrane with infinite shear and bending moduli where
�B → 0 and �S → 0.
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For a � h, the fluid stress tensor in the model problem of a sphere moving perpendicular to a
no-slip wall can be obtained to leading order in particle radius using the method of images due to
Blake [75]. For an infinitely extended rigid wall, the normal components of the stress tensor in the
cylindrical coordinate system are given by [76]

σ̂ 	
zz = 9

(
1 + 9

8 a	
)

(1 + r2)5/2
, σ̂ 	

zr = −9
(
1 + 9

8 a	
)
r

(1 + r2)5/2
on xS , (16)

wherein r is the radial distance measured in the comoving frame of reference translating at the
particle velocity (cf. inset of Fig. 1). We further note that σ̂ 	

zx = σ̂ 	
zr cos φ and σ̂ 	

zy = σ̂ 	
zr sin φ, where

φ ∈ [0, 2π ] is the polar angle.
We now assume that the particle is located at the center of a membrane of dimensionless radius

b	. Even though (16) applies in principle to an infinitely extended rigid wall (b	 → ∞), we will
assume in the sequel that these expressions approximately hold for a finite-sized disk provided that
b	 	 1. It can be noticed that in the far-field limit, the zz and zr components of the fluid stress
tensor stated above undergo a rapid decay with distance as r−5 and r−4, respectively. Consequently,
for relatively large membrane sizes, our simplifying approximation should be reasonable. An exact
analytical solution of the axisymmetric flow problem due to a Stokeslet directed along the axis of a
circular hard disk has been previously obtained in the form of a dual integral equation [77], finding
that the wall-induced correction to the hydrodynamic drag force exerted on a sedimenting particle
decays with disk radius as b	−5 and approaches rapidly the result by Lorentz [76,78] for moderately
large values of b	. Throughout this paper, we will thus assume that the membrane size is sufficiently
large for the above approximation to be valid.

C. Bending- and shear-related contributions to the lift force

We will consider next the bending- and shear-related contributions to the normal force separately.
As previously mentioned, the membrane normal displacement u	

z is a function of the membrane
bending properties only and does not depend on shear. It is straightforward, though tedious, to
calculate the solution in the zeroth-order problem for the normal displacement. As derived in the
Appendix, the normal displacement for a finite-sized membrane can be presented in the form

u0
	
z = H (r ) cos φ , (17)

where H is a radial function that satisfies the boundary conditions of vanishing displacement and
slope at r = b	, given explicitly by Eq. (A8). The derivative of the normal displacement with respect
to x	, which is required for the application of the reciprocal theorem, is explicitly given by Eq. (A9).

In addition, the solution of the zeroth-order problem for the in-plane displacements due to shear
for a finite-sized membrane can be cast in the form

u0
	
x (r, φ) = A(r ) cos(2φ) + G(r ) , u0

	
y (r, φ) = A(r ) sin(2φ) , (18)

where the radial functions A and G are given by Eqs. (A15) and satisfy A(r = b	) = G(r =
b	) = 0 to ensure zero displacement at the membranes extremities. The derivatives of the in-plane
displacements with respect to x	 are given by Eqs. (A16) of the Appendix. Finally, the radial velocity
gradient at the elastic membrane in the zeroth-order problem can readily be determined from the
solution for the flow field near a planar undeformed wall and is found to be [76]

∂v	
0r

∂z	

∣∣∣∣
z=0

= 9
(
1 + 9

16 a	
)
r2

(1 + r2)5/2
cos φ . (19)

Next, we substitute Eqs. (16) through (19) into the integral equation giving the hydrodynamic
normal force (15). Passing to polar coordinates yields the expressions of the bending- and
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shear-related contributions to the normal force. Specifically,

F H
⊥,B = −ηaVP �B

∫ 2π

0

∫ b	

0

(
σ̂ 	

zz

∂u0
	
z

∂x	
+ a	σ̂ 	

zru0
	
z

∂v0
	
r

∂z	

)
r dr dφ , (20a)

F H
⊥,S = −ηaVP �S

∫ 2π

0

∫ b	

0

(
σ̂ 	

zx

∂u0
	
x

∂x	
+ σ̂ 	

zy

∂u0
	
y

∂x	

)
r dr dφ , (20b)

which upon integration leads to the final analytical expressions evaluated up to terms of O(a	2),

F H
⊥,B = ηaVP �B

[(
1 + 27

16
a	

)
I1 − a	I2

]
, (21a)

F H
⊥,S = −ηaVP �S

(
1 + 27

16
a	

)
I3 . (21b)

Here, the quantities Iα > 0, α ∈ {1, 2, 3} depend on membrane size and can conveniently be

expressed as functions of the parameter λ := (1 + b	2)
1/2

as

I1 = 9π

2

{
2 ln

[
(1 + λ)2

4λ

]
− (λ2 + 2λ − 1)(λ − 1)2

λ2(λ + 1)2

}
, (22a)

I2 = 27π

320

(
60 ln λ − 113 + 180

λ
− 60

λ2
− 40

λ3
+ 45

λ4
− 12

λ5

)
, (22b)

I3 = 27π

4(1 + C)

(2λ + 1)(λ − 1)3

λ6(λ + 1)2

[
1 + 3λ + 4(1 + 2C)λ2

3 + 2C

]
, (22c)

where C = κA/κS and appears in the shear contribution to tangential stress balance at the membrane.
Note that I1 and I2 are associated with the contributions originating from the first and second integrals
of Eq. (20a), respectively. While the first term leads to a positive contribution to the lift force, the
second term is found to have an opposite effect. However, since I1 > I2 for all values of λ � 1, and
a	 � 1, the resulting normal lift force is always directed away from the membrane. In contrast, the
shear-related contribution to the lift force has an opposite effect, leading to an attraction of the particle
toward the membrane. A similar behavior has previously been observed when two particles are set
into motion toward an elastic membrane, where bending rigidity always leads to mutual repulsion,
whereas shear resistance can lead to attractive interaction [79].

For a very large membrane, say λ 	 1, the rescaled lift forces due to bending and shear have the
asymptotic form

F H
⊥,B

ηaVP �B
= 9π

[(
1 + 9

8
a	

)
ln λ − 2

(
1 + 27

16
a	

)
ln 2 − 1

2
+ 69

320
a	

]
, (23a)

F H
⊥,S

ηaVP�S
= −54π (1 + 2C)

(
1 + 27

16 a	
)

(3 + 2C)(1 + C)λ2
+ O(λ−3) . (23b)

It can clearly be seen that the bending-related contribution to the normal force diverges logarithmically
with the membrane size, whereas the shear-induced normal force decays as λ−2 and eventually
vanishes as the membrane radius goes to infinity. As discussed in Sec. IV A, the fluid stress scales as
aηVP/h2 and decays over length scales of h. Then, the in-plane displacement field (ux, uy ) varies
over a length scale of O(h) in response to the fluid stress, and over a length scale of O(b) to
satisfy the zero-displacement condition at the edge of the membrane. Estimating ∇2 ∝ h−2 + b−2

in Eq. (1a), we infer that the dimensionless in-plane displacement (u	
x, u

	
y ), defined in Eqs. (11) and

(12), contains O(1) terms with O(h2/b2) corrections, as evidenced by Eq. (A15). We find from
a detailed calculation that the O(1) terms above have a vanishing contribution to the integral in
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FIG. 2. Variation of the rescaled normal lift force due to particle motion tangent to a finite-sized membrane
with (a) pure bending and (b) pure shear versus the parameter λ = (1 + b2)1/2 as predicted theoretically from
Eqs. (21) and (22). The blue dashed line shown in panel (a) is the asymptotic results given by Eq. (23a).

Eq. (20b), leaving the O(h2/b2) terms to dominate so that F H
⊥,S = O(ηaVP�S(h/b)2), consistent

with asymptotic behavior of Eq. (23b). We also remark that as C → ∞, which corresponds physically
to an incompressible membrane, the shear-induced normal force vanishes for all membrane sizes.

In Fig. 2, we illustrate the variation of the dimensionless lift force induced on a solid particle
translating parallel to an idealized elastic membrane with pure bending [Fig. 2(a)] and pure shear
[Fig. 2(b)] as a function of the system size parameter λ. Results for four values of the Skalak ratio C

are shown which span the most likely values for elastic membranes to be expected for a wide range
of situations. Qualitatively, in the range of the present analytical theory (λ 	 1), lower values of λ

correspond to small normal forces, and vice versa.
In typical blood flow situations [17], red blood cells have a radius of b = 5 × 10−6 m, bending

modulus κB = 2 × 10−19 Nm, and shear modulus κS = 5 × 10−6 N/m with C = 100. According to
our analytical predictions, a spherical particle of radius a = 0.15 × 10−6 m, which is located above
a cell membrane at a distance h = 0.3 × 10−6 m (leading to a dimensionless membrane radius of
b	 � 17), translating at velocity VP = 10−6 m/s in a fluid of dynamic viscosity η = 1.2 × 10−3 Pa s
will experience a lift force of about 0.1% of the opposing drag force. This induced lift force is bending
dominated as the effect of shear dies out rapidly for a large system size.

Since the bending-related contribution to the normal force diverges logarithmically as λ → ∞,
we will present in the following section a regularization procedure to yield a finite lift force near an
infinitely extended membrane. A similar regularization approach has previously been employed by
Bickel to investigate the Brownian motion near a liquid-like membrane [80] or the hydrodynamic
mobility near a deformable fluid interface [81].

V. REGULARIZATION SOLUTION

We regularize the bending operator by introducing a length scale ε−1 beyond which bending
becomes subdominant to a body force [81], e.g., gravity, such that ε−4 = κB/g�ρ, where g is the
acceleration due to gravity and �ρ is the density difference between the lower and the upper phases.
Accordingly, the rescaled membrane normal displacement in the zeroth-order problem is the solution
of the regularized biharmonic equation (cf. Ref. [80])

(�2
‖ + ε4)u0

	
z = σ0

	
zz , (24)

wherein

σ0
	
zz = −9

(
1 + 9

16 a	
)
r

(1 + r2)5/2
cos φ . (25)
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Here, we restrict our attention for simplicity to particle motion tangent to an infinitely extended
membrane for which the normal force is shown in the previous section to be logarithmically divergent.
It is more convenient to solve the above equation using a Fourier transform technique and employing
Parseval’s theorem. We define the two-dimensional (2D) Fourier transform [82]

F {f (x)} =: f̃ (q ) =
∫
R2

f (x)e−iq·x dx , (26)

where x = (x, y) is the projection of the position vector r onto the horizontal plane and q =
(q cos θ, q sin θ ) is the wave vector that sets the coordinates in Fourier space. In addition, we recall
Parseval’s theorem, which relates the product of two functions in the real domain to that in the
wave-number domain [83],∫

R
f (x) g(x) dx = 1

(2π )2

∫
R

f̃ (q ) {g̃(q )}∗ dq , (27)

where an asterisk denotes a complex conjugate. Applying the identity (27) to Eq. (20a), which
provides the bending-related contribution to the normal lift forces, yields

F H
⊥,B = − ηaVP

(2π )2
�B

∫ 2π

0

∫ ∞

0

⎛⎝iq cos θ
{˜̂σ 	

zz

}∗ + a	

{
˜

σ̂ 	
zr

∂v	
0r

∂z	

}∗⎞⎠ũ0
	
z q dq dθ . (28)

Next, by transforming Eq. (24) into Fourier space and making use of the equality∫ 2π

0
cos φ e−iqr cos(φ−θ ) dφ = −2iπ cos θJ1(qr ) , (29)

where J1 is the Bessel function of the first kind, the normal displacement of the membrane is expressed
in Fourier space by

ũ0
	
z =

˜σ0
	
zz

q4 + ε4
= 6iπ

(
1 + 9

16 a	
)
q

q4 + ε4
e−q cos θ . (30)

Evidently, at large distances q � ε � 1, the deformation decays to zero, and thus the Fourier
transform of u0

	
z is well defined. Since σ̂ 	

zz is a radially symmetric function in r [cf. (16)], its 2D
Fourier transform is simply the zeroth-order Hankel transform apart from a factor 2π , which readily
leads to

˜̂σ 	
zz = 6π

(
1 + 9

8
a	

)
(1 + q )e−q . (31)

In addition, it follows from Eqs. (16) and (19) that

σ̂ 	
zr

∂v	
0r

∂z	
= −81

(
1 + 27

16 a	
)
r3

(1 + r2)5
cos φ ,

the 2D Fourier transform of which is given by

˜

σ̂ 	
zr

∂v	
0r

∂z	
= 54i

(
1 + 27

16 a	
)

q4
Gq cos θ , where Gq := G

([[
1

2

]
, [ ]

]
,

[[
9

2
,

5

2

]
,

[
3

2

]]
,
q2

4

)
.

(32)

Here G is the Meijer G function [84]. For q � 1, Gq ∝ q5, while for q 	 1, Gq undergoes a rapid
exponential decay. The resulting integral given by (28) is thus well behaved and convergent. By
substituting Eqs. (30)–(32) into (28), the normal force due to bending, upon regularization for an
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FIG. 3. Variation of the rescaled normal lift force due to an infinitely extended membrane with pure bending
vs ε−1 as given by Eq. (33). The dashed line is an asymptotic fit to the lift force in the region ε−1 	 1. The inset
shows the same data in a log-log plot where an asymptotic fit in the region ε−1 � 1 is shown as a dashed line.

infinitely extended membrane, can be presented in a form analogous to (21a) as

F H
⊥,B = ηaVP �B

[(
1 + 27

16
a	

)
I ′

1 − a	I ′
2

]
. (33)

Here I ′
1 and I ′

2 are positively defined quantities expressed as integrals over the wave number q as

I ′
1 = 9π

∫ ∞

0

q3(1 + q )e−2q

q4 + ε4
dq , I ′

2 = 81π

∫ ∞

0

Gqe
−q

q2(q4 + ε4)
dq . (34)

As before, I ′
1 and I ′

2 are contributions from the first and second terms in Eq. (28), respectively, such
that I ′

1 > I ′
2 for all values of ε, and thus leading to a repulsive force. We further note that both I ′

1 and
I ′

2 diverge logarithmically as ε → 0.
In Fig. 3, we present the variation of the bending-induced lift force upon regularization versus the

cutoff length scale ε−1 stated by Eq. (33). For ε−1 � 1, the body force dominates over the bending
force and the normal lift force decays rapidly as ε−4 before it eventually vanishes as ε−1 → 0. In
contrast, the lift force increases logarithmically with ε−1 similar to that observed in a finite-sized
system shown in Fig. 2(a). By equating the bending-induced lift force obtained for a finite-sized
system with that calculated in this section using the regularization procedure in the limit when λ 	 1
and ε−1 	 1, we find that these two systems are in fact equivalent for a cutoff length ε−1 � b	/π .

VI. CONCLUSIONS

In this paper, we have derived, using the reciprocal theorem for Stokes flow, expressions
for the elastohydrodynamic lift force induced on a spherical particle translating parallel to a
realistically modeled cell membrane possessing resistance toward shear and bending. Calculations
were performed using a far-field model in the point-particle framework valid when the particle
radius is small compared to distance from the membrane. Analytical solutions were derived using a
perturbation technique in the small deformation limit. For a finite-sized membrane of circular shape
fixed at its boundaries, the bending- and shear-induced lift forces were determined and expressed
in terms of the membrane size in addition to the dimensionless compliances associated with these
two deformation modes. Unlike the viscous drag force, the lift force is found to scale quadratically
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with particle translational velocity. Most important, the bending-related contribution to the lift force
increases logarithmically with the system size, whereas shear has an opposite yet insignificant
contribution to the total lift force.

A regularization solution was then presented for an infinitely extended membrane subject to a body
force, e.g., gravity, directed along the normal direction. The lift force was determined analytically
using a Fourier transform technique and Parseval’s theorem for the resulting integral, and expressed
in terms of infinite integrals over the wave number. An analogous logarithmic divergence of the lift
force is obtained upon decreasing the cutoff length scale during which the bending forces become
dominant over the body force. The finite-sized system is found to be asymptotically equivalent to the
regularized system in the particular situation where the cutoff length beyond which bending becomes
subdominant to a body force is ε−1 � b	/π . Given the far-field approximations made here, there
appears to be a small effect on the lift force when considering physical parameters for a typical red
blood cell membrane. For distances very close to the membrane, however, lubrication corrections
have to be accounted for, where an enhanced effect is expected. The membrane-induced lift force
quantified in this paper may possibly be of physiological significance for the escape or uptake of
targeted viral particles or nanocarriers by the membranes of living cells.
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APPENDIX: MEMBRANE DEFORMATION FIELD

In this Appendix, we derive exact analytical expressions for the displacement field for a finite-sized
membrane of dimensionless radius b	 in the zeroth-order problem. We first calculate the normal
displacement u0

	
z, which is dependent only on the membrane resistance toward bending. Next, we

calculate the in-plane displacements u0
	
x and u0

	
y , which are determined by the membrane resistance

toward shear.

1. Bending contribution

We consider the rescaled form of the biharmonic equation governing the evolution of a membrane
resisting bending as stated by Eq. (1b) of the main body of the paper, e.g.,(

∂2

∂x	2 + ∂2

∂y	2

)2

u0
	
z = σ0

	
zz , (A1)

where σ0
	
zz is the normal traction imposed at the planar configuration of reference as derived from

the Blake tensor for a point force acting along the x direction, given in the cylindrical coordinate
system by [75]

σ0
	
zz = −9r

(
1 + 9

16 a	
)

(1 + r2)5/2
cos φ. (A2)

Again, we consider that the membrane size is large enough for the latter expression to be valid.
For the determination of the membrane normal displacement, we use the separation of variables
approach [85]. By substituting Eq. (A2) into Eq. (A1) and transforming the resulting equation into
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the polar coordinate system, we readily obtain

u0
	
z,rrrr + 2

r
u0

	
z,rrr + 2u0

	
z,rrφφ − u0

	
z,rr

r2
+ u0

	
z,r − 2u0

	
z,rφφ

r3
+ 4u0

	
z,φφ + u0

	
z,φφφφ

r4

= −9r
(
1 + 9

16 a	
)

cos φ

(1 + r2)5/2
. (A3)

Because of the form of the right-hand side in (A3), we choose a solution of the form

u0
	
z = H (r ) cos φ , (A4)

where the radially symmetric function H is solution of the ordinary differential equation

H,rrrr + 2H,rrr

r
− 3H,rr

r2
+ 3H,r

r3
− 3H

r4
= −9

(
1 + 9

16 a	
)
r

(1 + r2)5/2
, (A5)

subject to the regularity conditions at r = 0

|H (r = 0)| < ∞ , |H,r (r = 0)| < ∞ , (A6)

in addition to the boundary conditions of vanishing displacement and slope at the fixed points located
at r = b	. Specifically,

H (r = b	) = 0 , H,r (r = b	) = 0 . (A7)

Under these conditions, the solution is unique and can be obtained using the algebra software
package MAPLE as

H (r ) = 3
(
1 + 9

16 a	
)

4

[
2r ln

(
1 + R

1 + λ

)
− r3

(1 + λ)2
+ 2λ + (λ − 3)R + 2

R(1 + λ)
r − 2(R − 1)

Rr

]
, (A8)

where R := (1 + r2)1/2 and λ := (1 + b	2)
1/2

as defined in the main text.
By differentiating the normal displacement with respect to x	 as required by the application of

the reciprocal theorem, we obtain

u0
	
z,x = H1(r ) cos(2φ) + H2(r ) , (A9)

where the radial functions H1 and H2 are explicitly given by

H1(r ) = 3
(
1 + 9

16 a	
)

4R(R + 1)

[
1 − R − r2 + R − 2λ − λ2

(1 + λ)2
r2

]
, (A10a)

H2(r ) = 3
(
1 + 9

16 a	
)

2

[
λ2 − R2

(1 + λ)2
+ ln

(
1 + R

1 + λ

)]
. (A10b)

2. Shear contribution

We next consider the system of partial differential equations governing the displacement field in
an elastic membrane undergoing shear deformation, stated in a condensed form by Eq. (1a) of the
main body of the paper,

−1

3

[
2(1 + C)

∂2u0
	
x

∂x	2 + ∂2u0
	
x

∂y	2 + (1 + 2C)
∂2u0

	
y

∂x	∂y	

]
= σ0

	
xz , (A11a)

−1

3

[
∂2u0

	
y

∂x	2 + 2(1 + C)
∂2u0

	
y

∂y	2 + (1 + 2C)
∂2u0

	
x

∂x	∂y	

]
= σ0

	
yz . (A11b)

084101-13



DADDI-MOUSSA-IDER, RALLABANDI, GEKLE, AND STONE

Transforming to the polar coordinate system and using the Blake result for a point force acting along
the x direction, the in-plane tractions at the wall are given by [75]

σ0
	
xz = 9

(
1 + 9

16 a	
)
r2

(1 + r2)5/2
cos2 φ , σ0

	
yz = 9

(
1 + 9

16 a	
)
r2

(1 + r2)5/2
cos φ sin φ . (A12)

Next, considering solutions of the form

u0
	
x (r, φ) = A(r ) cos(2φ) + G(r ) , u0

	
y (r, φ) = A(r ) sin(2φ) (A13)

yields the following system of differential equations in A and G,

(3 + 2C)

(
A,rr + A,r

r
− 4A

r2

)
+ (1 + 2C)

(
G,rr − G,r

r

)
= −27

(
1 + 9

16 a	
)
r2

(1 + r2)5/2
, (A14a)

G,rr + 2(1 + C)
G,r

r
− A,rr + 2C

A,r

r
+ 2(3 + 2C)

A

r2
= 0 . (A14b)

The solutions satisfying the regularity conditions at the origin and a vanishing displacement at
the membrane extremities are unique and can be expressed as

A(r ) = 9
(
1 + 9

16 a	
)

8(1 + C)

{[
− 2r2

(1 + λ)2
+ 2(R − 2)

R
+ 4(R − 1)

Rr2

]
C + 1 − λ + 2

λ(λ + 1)2
r2

− 2(R − 1)

Rr2

}
,

(A15a)

G(r ) = 9
(
1 + 9

16 a	
)

4(1 + C)

{
(2C + 3)

[
arctanh

(
1

λ

)
− arctanh

(
1

R

)
− ln

( r

b	

)]
+ 1

2C + 3

[
(2C + 1)(2 + (2C + 1)λ)

λ(1 + λ)2
r2 − 4C2(λ − 1)

λ + 1
+ 2C(3R − λ − 2Rλ)

Rλ

− 3

R
+ 5 − (λ − 2)λ

λ(λ + 1)

]}
. (A15b)

By taking the derivatives of the in-plane displacements with respect to x	, as required by the
application of the reciprocal theorem, we obtain

u0
	
x,x = cos φ[K1(r ) cos2 φ + K2(r )] , u0

	
y,x = sin φ[W1(r ) cos2 φ + W2(r )] , (A16)

where we have defined

K1(r ) = − 9
(
1 + 9

16 a	
)

2(1 + C)R3r

{
[(1 + 2C)R − 6C]r2 + 5 − 14C + (10C − 3)R

+ 4(2C − 1)(R − 1)

r2

}
, (A17a)

K2(r ) = 9(2C − 1)
(
1 + 9

16 a	
)

4(1 + C)

{
r

(λ + 1)2(2C + 3)

(
1 + 2C + 2

λ

)
+ 1

rR

[
R − 4 + 6(R − 1)

r2

]}
, (A17b)
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FIG. 4. Rescaled membrane displacement in the plane of maximum deformation for (a) and (b) φ = 0, and
(c) φ = π/4, as predicted theoretically for a membrane size b	 = 20 and Skalak ratio C = 1.

W1(r ) = −9
(
1 + 9

16 a	
)

2(1 + C)Rr

{
2C

[
R − 3 + 4(R − 1)

r2

]
+ 1

R

[
r2 + 5 − 3R

R
− 4(R − 1)

r2R

]}
, (A17c)

W2(r ) = 9
(
1 + 9

16 a	
)

4(1 + C)r

{
2C

[
− r2

(λ + 1)2
+ R − 2

R
+ 2(R − 1)

r2R

]
+ 1 − 2 + λ

λ(λ + 1)2
r2 − 2(R − 1)

r2R

}
. (A17d)

Figure 4 illustrates the variation of the displacement fields along the membrane as predicted
theoretically in Eq. (A4) for the normal displacement and Eq. (A13) for the in-plane displacements.
Here the membrane size is set b	 = 20 and the Skalak ratio C = 1. The displacements are shown in
their plane of maximum deformation corresponding to φ = 0 for u0

	
z and u0

	
x [Figs. 4(a) and 4(b)]

and to the plane φ = π/4 for u0
	
y [Fig. 4(c)]. The normal displacement is found to be about one

order of magnitude larger that the lateral displacements. This is in accord with the calculations of
the lift force where the effect of membrane resistance toward bending is found to be more significant
compared to that of shear.
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