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Numerical–experimental observation of shape
bistability of red blood cells flowing in a
microchannel†

Achim Guckenberger, ‡*a Alexander Kihm, ‡b Thomas John,b

Christian Wagner §bc and Stephan Gekle §a

Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high

deformability. Predicting the realized shapes is a complex field as they are determined by the intricate

interplay between the flow conditions and the membrane mechanics. In this work we construct the

shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a

microchannel. We use both experimental in vitro measurements as well as 3D numerical simulations to

complement the respective other one. Numerically, we have easy control over the initial starting

configuration and natural access to the full 3D shape. With this information we obtain the phase

diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the

occurrence frequency of the different shapes as a function of the cell velocity to construct the

experimental diagram which is in good agreement with the numerical observations. Two different major

shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low

(o1 mm s�1) and high velocities (43 mm s�1) while in-between only croissants are stable. This

pronounced bistability indicates that RBC shapes are not only determined by system parameters such as

flow velocity or channel size, but also strongly depend on the initial conditions.

1 Introduction

Red blood cells (RBCs) are the major constituent of mammalian
blood and therefore determine the majority of its flow proper-
ties. One of the most amazing features of RBCs is their
deformability, allowing them to squeeze through channels with
diameters much smaller than their own equilibrium size.1–3

Another consequence of their deformability is the wide range of
stationary and non-stationary shapes assumed by the RBCs in
microchannel flows with dimensions similar to or slightly
larger than the RBC equilibrium radius.4–6 Understanding
and being able to predict these shapes is of high importance

for a variety of reasons. From a fundamental point of view, it
serves as the foundation in a bottom-up approach to under-
stand the properties of red blood cell suspensions which are
chiefly determined by single particle behavior.7–13 From an
applied perspective, a series of recent investigations have
devised promising approaches for sorting cells based on their
mechanical properties either in lateral displacement devices14

or using high-speed video microscopy.15 Finally, knowledge of
the precise cell shape is also essential for accurately measuring
geometric properties of cells.16

The most frequently observed shapes of RBCs in micro-
channel flows are the so-called ‘‘croissant’’ and ‘‘slipper’’
shapes. Examples are depicted in Fig. 1. Some researchers refer
to croissants also as parachutes, although here we prefer the
term croissant since our shapes are not perfectly rotationally
symmetric (similar to the ones found by Farutin and Misbah17).
Probably one of the earliest experimental studies on isolated
red blood cells in flow was performed by Gaehtgens et al.,18

where slippers as well as parachutes have been found depend-
ing on the diameter of the cylindrical channel. Suzuki et al.19

presented an in vivo phase diagram of parachutes and slippers
as a function of velocity and confinement. Slippers dominated
at smaller diameters and higher velocities. Secomb et al.20

compared experiments with 2D simulations in cylindrical
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channels of 8 mm diameter for a cell velocity of approximately
1.25 mm s�1. Furthermore, two other publications21,22 consid-
ered the flow of RBCs at very low viscosity ratios of l t 0.27.
They presented a phase diagram showing parachutes and
slippers, where the velocity was varied in the very high regime
of 10 to 170 mm s�1. Tomaiuolo et al.23 found parachutes at
smaller and slippers at higher velocities in cylindrical channels
of 10 mm diameter. A subsequent study24 as well as Prado
et al.26 considered the transient during start-up of the flow.
Cluitmans et al.26 detected croissants at lower (t5 mm s�1) and
slippers at higher velocities (\10 mm s�1) in rectangular channels
with widths r10 mm. Moreover, Quint et al.27 found a stable
slipper and a metastable croissant at the same set of parameters in
a wider channel of 25 mm � 10 mm. Other publications presenting
experiments in channel flow also touch the subject of RBC shapes
but focus on other aspects such as the methodology,28–35 dense
suspensions and cell interactions18,22,35–42 or use vastly larger
channel diameters.13,43

Numerical simulations and semi-analytical calculations of
isolated particles in microchannels mostly studied axisym-
metric RBCs44–46 or 2D vesicles.5,6,47–52 The numerical work
by Aouane et al.,5 for example, identified a large amount of
dynamics including deterministic chaos. The first full 3D simula-
tion of a single cell with a realistic RBC model (but with a ratio of
inner to outer viscosity of l = 1) was conducted by Noguchi and
Gompper53 who used a cylindrical tube with a diameter of 9.2 mm.
They found the typical discocyte shape below and parachutes
above a critical velocity which depends on the elastic parameters.
A subsequent study by the same group additionally explored this
threshold as a function of confinement.54 Moreover, Fedosov et al.4

presented very detailed phase-diagrams where the velocity and
confinement was varied for three different sets of elastic moduli
and a viscosity ratio of l = 1. They observed four distinct regions
where snaking, tumbling, slippers and parachutes occurred.
Recently, Ye et al.55 considered the shapes of an RBC with l = 1
in rectangular microchannels (with width 10 mm and aspect ratios
1 to 2) for the three cell velocities 4, 20 and 100 mm s�1 and
observation times up to E0.03 s. Snapshots after this short initial
transient showed parachutes or slightly slipper-like shapes.

Bistability, i.e. the observation of two different stable shapes
depending on the initial condition but at otherwise identical
system parameters, was barely considered so far. It was

observed for simpler situations such as close-to-spherical vesicles
in unbounded Poiseuille flow analytically56 and numerically17 or
near a single wall,57 for a 2D RBC model in bounded Poiseuille
flow,20 for the initial transient of a red blood cell in a rectangular
channel55 or for simple shear flows.13,58–60 No systematic experi-
mental investigations exist for cells flowing in microchannels.
Moreover, the 3D simulations and experimental investigations
that were mentioned above and that consider the RBC shapes in
microchannels in more detail all used a viscosity ratio of l r 1,
although analytical and numerical computations showed that
choosing a physiologically more realistic value of l E 561 can
significantly affect RBC dynamics.6,17,50,56

Here we present a detailed systematic experimental-
numerical study on the steady-state shape of isolated red blood
cells in a rectangular microchannel. We use the physiological
viscosity ratio of l = 5 appropriate for healthy human red blood
cells in the microcirculation.61 The initial position is varied in
the simulations directly, while experimentally we determine
it via measurements at the channel entrance. Our central
finding is that the initial starting position of the RBC has a
decisive influence on the final steady-state shape of the red
blood cell.

We begin by outlining our experimental and numerical
methods in Section 2. Afterwards, the results from our experi-
ments (Section 3) and simulations (Section 4) are presented,
while Section 5 is dedicated to their detailed comparison.
Finally, we conclude our work in Section 6.

2 Methods
2.1 Experimental setup

The sample preparation and experimental setup is mostly
identical to the one used recently by Claverı́a et al.36 In short,
human red blood cells were obtained from healthy donors by
needle-prick and used within three hours. After appropriate
preparation,36 they are suspended in a phosphate buffered
saline (PBS) and bovine serum albumin solution which has a
viscosity of approximately 1 mPa s. The viscosity ratio of
the cells is therefore l E 5.27 This value corresponds to the
typical physiological value of healthy red blood cells in blood
plasma.61 The RBCs are pumped at room temperature through

Fig. 1 Typical RBC shapes from simulations and experiments. (a) The typical discocyte shape employed in some of the simulations as the starting shape.
Half of it was made transparent for illustration purposes. Its horizontal diameter is 8 mm. (b) A typical croissant observed in the experiments when applying
a pressure drop of 100 mbar (cell velocity 0.98 � 0.07 mm s�1). (c) A croissant with a velocity of E1.1 mm s�1 obtained from the numerical simulations.
(d) The cross-section of the croissant from (c). (e) A slipper from the experiments at 500 mbar (cell velocity 5.16 � 0.11 mm s�1). (f) A typical slipper from
the simulations with a cell velocity of E5.2 mm s�1. (g) The cross-section of the slipper from (f). The black lines on the shapes from the simulations depict
the mesh. The bottom and top black lines in all figures are the walls (Ly E 12 mm apart), while the small black lines are scale bars of length 2 mm. The flow is
in the positive x-direction (except in figure (a) where no flow exists).
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rectangular, PDMS-based channels by a high-precision pressure
device (Elveflow OB 1, MK II) with pressure drops ranging from
20 to 1000 mbar. The channels have a cross-section width of
Ly = (11.9 � 0.3) mm and a height of Lz = (9.7 � 0.3) mm without
any applied pressure drop and are thus similar to the vessel
diameters found in the microvascular system.62,63 Their length
is approximately Lx = 40 mm. We use rectangular rather than
cylindrical channels since they are easier to manufacture, are
therefore prevalent in lab-on-a-chip devices63,64 and have the
merit that cells are not rotated randomly around their axis
due to the missing rotational symmetry. The latter property
greatly simplifies the microscopic observation and analysis of
the RBCs.

The hematocrit (volume percentage of RBCs) in the reservoir
before the inlet is always t1.0%, i.e. very low. Nevertheless, we
find cells flowing in clusters as well as single cells. For the
present work we have analyzed only the latter. To this end,
previous experimental and theoretical results showed that the
hydrodynamic interaction in a linear channel decays exponen-
tially, and becomes negligible if the inter-particle distance is
more than twice the channel width.54,65,66 Considering that our
channel has the dimensions E12 mm � 10 mm, cells can be
considered as being single for distances \25 mm. We only used
cells that were at least 40 mm apart from other entities.

We perform measurements at two locations along the channel,
namely at the entrance (x = 0 mm) and at x = 10 mm downstream.
Claverı́a et al.36 showed that only minor differences occur
between measurements at x = 2 mm and x = 10 mm, i.e. the
cells are well converged at the latter position. This position is
also consistent with other references18,22,26 and our simula-
tions as explained in the ESI.† Vessel lengths in-between
bifurcations in the microvascular system are less than 1 mm,
i.e. much shorter.67 Nevertheless, this is not necessarily true for
in vitro experiments or lab-on-a-chip devices, and the long-time
behavior also holds information about the general intrinsic
properties. The flowing RBCs are recorded by an inverted bright-
field microscope (Nikon TE 2000-S) with an oil-immersion
objective (Nikon CFI Plan Fluor 60�, NA = 1.25) and a high-
resolution camera (Fastec HiSpec 2G) at a frame rate of 400 frames
per second. The camera is aligned along the z-direction so that
the photographs show the cells in the x–y-plane (compare Fig. 2).
Hence, determination of the z-position is not possible, but also
not absolutely necessary as our simulations always show a
z-position of nearly 0 (see Section 5). We analyze the recorded
image sequence with a custom MATLAB script that detects each
projected cell shape and the corresponding 2D center of mass
position. It additionally tracks the cell position over the image
sequence to obtain the individual cell velocity. Considering
the optical setup, we assume an uncertainty in the position
measurements of �sP with sP = 0.1 mm. The cell shapes are
classified by hand.

2.2 Simulation setup

The numerical simulations mimic our experimental setup as
far as possible. Hence, we place a single red blood cell in a
rectangular channel as shown in Fig. 2. The channel has a

cross-section of width Ly = 12 mm and height Lz = 10 mm.
Periodic boundary conditions are assumed in the x-direction
with a periodicity of Lx = 42.7 mm, in agreement with above
estimates for the decay of hydrodynamic interactions.

We vary the initial y–z-position (relative to the channel
center) of the RBC’s centroid along the line zinit = 5yinit/9, which
almost corresponds to the channel diagonal. The corresponding

initial radial position is thus simply given by rinit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yinit2 þ zinit2

p
.

Apart from the initial position, we also vary the initial shape. The
first employed shape is the typical discocyte equilibrium
shape,68,69 as depicted in Fig. 1(a), where the RBC axis is aligned
with the channel axis (as shown in Fig. 2). The second and third
starting shapes are a croissant and slipper, whose geometries are
obtained from two simulations that start with a discocyte. They are
further detailed in the ESI.†

Cell velocities are extracted by considering the difference of
the centroids between successive time steps. During the simu-
lation, we monitor several quantities such as the radial, y- and
z-positions, the RBC asphericity and the cell velocity as well as
the full 3D shape to determine when the steady state has been
fully reached. The assumed shapes are classified manually by
considering the 3D geometry and the graphs of the cell posi-
tion, velocity and asphericity, similar to ref. 4. For example,
slippers are off-centered and show periodic oscillations in the
graphs, while croissants are centered and have a static shape
(also compare the ESI†).

Regarding the actual modeling of the constituents, the RBC
is filled with a Newtonian fluid with a dynamic viscosity mRBC,
whereas the ambient flow is a Newtonian fluid with the
dynamic viscosity m = 1.2 mPa s of blood plasma.70–72 We set
the viscosity ratio l = mRBC/m to a value of 5 in all simulations.
The surface area of the RBC is set to 140 mm2 and the volume is
set to 100 mm3 (see e.g. ref. 71 and 73), leading to a large radius
of RRBC = 4 mm when the cell is in the typical discocyte

Fig. 2 Simulation setup: a single red blood cell is placed in a rectangular
channel of width Ly = 12 mm and height Lz = 10 mm. Periodic boundary
conditions are employed. Initially, the centroid of the cell is offset from the
center axis along the left black arrow by a distance rinit. The depicted RBC
illustrates the discocyte starting shape, although other shapes have been
used, too, as explained in the main text and the ESI.† Furthermore, the
black lines on the surfaces illustrate the employed meshes. The arrow at
the top shows the view from the camera in the experiments (i.e. onto the
x–y-plane) and the flow is in the positive x-direction.
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equilibrium shape (Fig. 1(a)). The mechanics of the infinitely thin
membrane are governed by Skalak’s law74,75 for the in-plane
elasticity with a shear modulus of kS = 5 � 10�6 N m�1 76,77 and
an area dilatation modulus of kA = 100kS. This value for kA

ensures that the area changes remain below 2% in all cases. We
take the reference state for the Skalak model to be the typical
discocyte shape.68,69 The membrane is additionally endowed
with some bending resistance which is modeled according to
the Canham–Helfrich law,78–80 where the bending modulus is
fixed to kB = 3 � 10�19 N m.77,81 The spontaneous curvature is
set to zero.

We use 2048 flat triangles to discretize the RBC in our
numerical implementation. The forces are computed as described
by Guckenberger et al.,82 with Method C therein being used for
the bending contribution. An unavoidable artificial volume drift
of the cell is countered by adjusting the velocity to obey the no-flux
condition and by a subsequent rescaling of the object.83,84 More-
over, the channel is represented by 2166 flat triangles. The corners
are rounded to prevent numerical problems (compare Fig. 2).
Rather than prescribing a zero velocity at the channel walls, we
use a penalty method for efficiency reasons with a spring constant
of kW = 1.9� 107 N m�3.6,84 Increasing the triangle counts and the
box length Lx did not change the results significantly.

The Reynolds number in the considered system is defined as
Re = 2RRBCumaxr/m. For a velocity of umax r 10 mm s�1 and the
density r E 103 kg m�3 of the ambient and inner liquid we
therefore have Re o 0.1. Hence, the flow can be appropriately
described using the Stokes equation. This allows us to employ
the boundary integral method (BIM)85 for 3D periodic
systems.84,86 Note that this method requires to prescribe a
certain average flow through the whole unit cell instead of a
pressure drop within the channel. The latter is unfortunately
not easily accessible. We therefore compare with experiments
by means of cell velocities. Continuing, the integrals are
computed by a standard Gaussian quadrature with 7 points
per triangle in conjunction with linear interpolation of nodal
quantities and appropriate singularity removal for the single-
and double-layer potentials.84 Furthermore, we use the smooth
particle mesh Ewald (SPME) method87 to accelerate the com-
putation of the periodic Green’s functions; cutoff errors are
kept below 5 � 10�5. The resulting linear system is solved via
GMRES88 up to a residuum of 10�5, and the kinematic condi-
tion is integrated in time using the adaptive Bogacki–Shampine
algorithm89 with the absolute tolerance set to 10�5RRBC. When
the run-times are normalized to a two-socket system with 28
cores, each simulation took 1 to 29 days, with an average of
around 5 days. The phase diagrams below are formed by 329 of
such simulations in total. Further details on the numerical
method as well as verifications of the implementation can be
found in our previous publications.27,82,84,90

3 Experimental results

We classify cells in the experiments either as croissants, slip-
pers or ‘‘other’’ not uniquely identifiable or completely

different shapes. Typical slipper and croissant shapes are
shown in the photographs (b and e) of Fig. 1. See the ESI† for
a collection of all images.

To systematically investigate the occurrence of the different
shapes, we vary the imposed pressure drops from 20 to
1000 mbar. The corresponding cell velocities range from
0.14 mm s�1 to 10.6 mm s�1, covering the whole physiological
range in microchannels.62,91,92 We consider the cells 10 mm
away from the channel entrance where most of the cells
reached a steady state.36 Fig. 3(a) depicts the fraction of
observed shapes as a function of the measured cell velocities,
constituting our central result from the experiments. This
distribution was obtained by considering typically more than
100 cells per imposed pressure drop. The average velocities
were computed by averaging over all cells at a certain pressure
drop, with the horizontal error bars showing the corres-
ponding standard deviations su in cell velocity. Not all
velocities are the same because croissants and slippers have
different velocities at otherwise identical flow conditions,27

and because of the natural variations of cell properties such
as elasticity and size, as also noted by Tomaiuolo et al.23

See the ESI† for more details. Considering Fig. 3(a), high
velocities obviously favor slippers while croissants are the
most prominent for medium velocities. A pronounced peak
exists from around 1 to 2 mm s�1. Very small velocities
produce mostly shapes that fall outside our simple two-state
classification.

Fig. 3(b) illustrates the corresponding estimated probability
density function of the center of mass y-position of the cells at
the various pressure drops. This estimate was obtained from
the measured y-positions by using the kernel density estimator
as implemented in MATLAB R2017a (ksdensity) with a support
of [�6,6] mm and otherwise default settings. Thus, croissants
and ‘‘others’’ occurring at lower velocities are centered in the
channel, while slippers occurring at high velocities show a
pronounced off-centered position. The assumed shapes there-
fore imply a certain y-position within the channel with slippers
being off-centered and croissants centered. This is confirmed
when analyzing the offset distribution separately for each shape
class as shown in the ESI.†

From Fig. 3(a) it is tempting to conclude that the
flow velocity is the major parameter that determines the RBC
shape, with low velocities favoring centered and high velocities
favoring off-centered flow positions. However, looking at the
cell positions near the channel entrance (Fig. 4) we find that
already upon entering the channel RBCs are not homo-
geneously distributed. At low velocities we observe a clear bias
towards a centered initial position, with the distribution
becoming approximately homogeneous only at the highest
measured velocities. These experimental observations allow
two distinct parameters as the reason for the dominance of
the slipper shapes at high velocities: either the higher flow
velocity itself or the more off-centered entry into the channel.
To disentangle these two possibilities we now present numerical
simulations whose geometry directly corresponds to the
experimental setup.
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4 Numerical results

We numerically study the behavior of a single RBC in a
rectangular microchannel by varying the imposed flow velocity,
the initial shape and the initial offset rinit from the centerline of
the tube (see Section 2.2). After starting the flow, we wait until
the RBC reaches the steady state where the shape as well as the
radial position does no longer change, or alternatively until
periodic motion is observed.

In the majority of cases, we observe two different states: a
croissant shape (which moves as a rigid body, Fig. 1(c)) and a
slipper shape (Fig. 1(f)). The latter exhibits tank-treading (TT)
and oscillatory contractions similar to the slippers seen by
Fedosov et al.4 (see the ESI† for a movie and the insets in
Fig. 5). Tank-treading refers to the motion of the membrane
around a (more or less) static shape. Note that perfectly
axisymmetric parachutes are suppressed by the rectangular
channel flow, contrary to the situation for cylindrical tubes4

or unbounded Poiseuille flows.17

To start the systematic study, we take a red blood cell that is
initially in the typical discocyte shape with its rotation axis aligned
along the tube’s axis (cf. Fig. 2). We then vary the radial offset rinit

from the center line as described in Section 2.2 and record the
final radial position as well as the shape. The mean of the radial
position is extracted by a temporal average once the cell is in the
steady state (see the ESI† for more details). Fig. 5 shows the result
for a cell velocity of E6.5 mm s�1. A single sharp transition

Fig. 4 Experimental results: estimated probability density function of the
cells’ center-of-mass y-position at the channel entrance (position x =
0 mm). The pressure drops increase from the bottom (20 mbar) to the top
(1000 mbar) with the numbers on the left side indicating the corres-
ponding value in millibar. We display the respective measured mean cell
velocities in mm s�1 on the right side. The area under the curves is
normalized to one. The curves are offset in the vertical direction for
illustration purpose.

Fig. 3 Experimental results: (a) fraction of observed cell shapes as a function of the applied pressure drop (top axis) and mean cell velocity (bottom axis).
The horizontal error bars depict the standard deviation of the measured cell velocities for each applied pressured drop. The shaded background is a guide
to the eye. Furthermore, the insets show examples of experimental images (see the ESI† for a collection of all photographs). (b) Estimated probability
density function of the RBCs’ center-of-mass y-position within the channel for various pressure drops (indicated as numbers on the left in millibar) for all
shapes combined. The corresponding measured mean cell velocities are depicted on the right in mm s�1. We show the separated contributions of each
shape to the distribution in the ESI.† The area under the curves is normalized to one. The dashed lines illustrate the wall positions. Both figures are for the
position 10 mm downstream from the channel entrance.
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at rinit E 0.7 mm from centered croissants to off-centered slippers
is observed. The final position of the slippers is mostly offset only
along the wider width of the channel ( y-direction), but not along
the smaller height (z-direction). Due to the transition we find
pronounced bistability: the result is significantly determined by
the initial condition and two different shapes (croissant and
slipper) coexist. This is consistent with the 2D simulations by
Secomb et al.20 and Tahiri et al.6 It also agrees qualitatively with
observations by Farutin and Misbah for 3D simulations of vesicles
in unbounded Poiseuille flow.17

To study the bistability in more detail, we vary the imposed
flow velocity as well as the initial offset rinit and characterize the
behavior in the steady state. This yields the shape phase
diagram depicted in Fig. 6(a). The cell velocity is extracted in
the steady state via a temporal average. For slippers the velocity
varies periodically (similar to the radial position): the mini-
mum and maximum in one period is indicated by the horizon-
tal error bars. Overall, the mean cell velocity u ranges from
0.132 mm s�1 to 10.4 mm s�1, matching with the experimentally
covered range. The corresponding shear capillary number CaS :¼
mu/kS varies therefore in the interval CaS A [0.0317, 2.50], while the
bending capillary number CaB :¼ muRRBC

2/kB lies in the range
CaB A [8.45, 666]. The reddish area illustrates the approximated
region where croissants exist. Furthermore, there is a maximal
initial offset rinit above which overlapping with the vessel wall
would occur.

The shape phase diagram in Fig. 6(a) (together with (b and c)
explained below) constitutes our main result from the simula-
tions. Starting near the channel center (in the reddish region)
results in croissants, whereas higher initial offsets lead to
slippers. The transition is found to be sharp, and depends
significantly on the velocity. Croissants are the only stable
steady state in a small region ranging from around 2 to
3 mm s�1, independently of the initial radial position. Smaller
and larger velocities tend to favor slippers. Stable croissants do
not appear below 0.25 mm s�1.

While the final shape is recognizable often early on, some
small changes can still occur before the cell completely reaches
the steady state. In the case of the slippers, the final perfectly
periodic state is usually reached after roughly 2 s to 10 s.
Relative to a typical flow timescale of t :¼ RRBC/u (where u is
the mean cell velocity), it is typically reached after 1t to 500t. In
contrast, the final croissant state is in some cases achieved only
after more than 30 s (i.e. 4104t), possibly after an intermediate

Fig. 5 Simulation results: averaged radial position in the steady state
as a function of the initial radial offset for a cell velocity of E6.5 mm s�1.
The RBC starts in the typical discocyte shape with its rotation axis
aligned with the tube’s axis (Fig. 2). The dotted line is a guide to the eye.
Half of the channel’s extent along the y-direction (width) is shown as a
dashed line at the top. The extent in the z-direction (height) is of less
significance here since the steady states are always almost centered in
the z-direction. Furthermore, the radial position for the converged slippers
oscillates around a mean value and their shapes show periodic ‘‘contrac-
tions’’ as indicated by the vertical error bars and the right two insets,
respectively.

Fig. 6 Simulation results: shapes obtained when varying the initial offset rinit and the velocity. Each symbol corresponds to one simulation. The lower
horizontal axis shows the average cell velocity in the steady state, while horizontal error bars depict the minimal and maximal velocities in one period
(variations for croissants nearly zero and thus not visible). The upper dashed line represents the maximal initial offset: above this offset, the cell would
overlap with the wall. The other lines and the colored areas are guides to the eye and illustrate the different regions in the phase diagram. Each figure
corresponds to a different initial shape, namely (a) to the typical discocyte shape, (b) to a croissant and (c) to a slipper. These shapes are shown in Fig. 1(a)
and in the ESI.† The inset in the last figure depicts an example of a tank-treading croissant. Fig. 5 corresponds to the vertical column at E6.5 mm s�1 in
sub-figure (a).

Paper Soft Matter



2038 | Soft Matter, 2018, 14, 2032--2043 This journal is©The Royal Society of Chemistry 2018

slipper state that can last several seconds (see Fig. S7 and the
movie in the ESI†). Hence, shapes observed in the simulations
much earlier than one second can often turn out to be tran-
sient, contrary to the interpretation of Ye et al.55 but in agree-
ment with Prado et al.25

Considering our results in Fig. 6(a) in more detail, we find
that two different types of croissants and slippers are possible.
On the one hand, at very low velocities (t0.7 mm s�1)
the slippers no longer exhibit tank-treading motion of the
membrane and instead show tumbling behavior: the cell
rotates around the z-axis while approximately preserving its
shape (similar to a rigid-body, see the ESI† for a movie). The
difference compared to the tumbling motion observed by
Fedosov et al.4 is that the cell still exhibits a clear slipper-like
instead of a proper discocyte shape. Hence, we classify this
mode still as slipper. On the other hand, at very high velocities
(\7 mm s�1) slightly asymmetric shapes strongly reminiscent
of croissants with a distinct tank-treading motion can some-
times be observed (see the inset in Fig. 6(c) for an example). As
the shape itself is very close to a croissant, we will nevertheless
consider it to be a croissant below.

A natural question that occurs in light of the profound
bistability is the influence of other initial shapes on the
result. To this end, we consider a typical croissant as well as
a typical slipper as the starting shape. Both were obtained
from previous simulations that started with the discocyte
form and are characterized in the ESI.† We once again
construct the shape phase diagram as before and display
the results in Fig. 6(b) and (c). Note that the different starting
shapes admit a larger initial radial position rinit of the

centroid. In short, starting with a croissant favors croissants
in the steady state (the reddish area is larger than in Fig. 6(a)).
For slippers it is the other way around: starting with a slipper
tends to produce more slippers (reddish area smaller than
in Fig. 6(a)). Despite this, the croissant-only region from
around 2 to 3 mm s�1 still exists unscathed. Overall, only
two qualitative differences occur between the phase diagrams
of different initial shapes, both at lower velocity when starting
with the croissant shape (Fig. 6(b)): first, stable croissants
emerge at very low velocities (t0.7 mm s�1) and second, the
croissant-only peak exhibits a ‘‘protrusion’’ into the slipper
space. This observation suggests that slippers and croissants
can be stable below 2 mm s�1 for most rinit values. It is further
confirmed by simulations that start with differently rotated
discocytes in the ESI.†

Another interesting aspect concerns the radial positions of
the centroids in the final steady states. The average values are
obtained by computing the temporal average in the steady state
first for each simulation, and then combining the results for
identical shapes via a weighted arithmetic mean. We use the
observation time in the steady state as the weight. This proce-
dure leads to Fig. 7(a). Obviously, the final radial positions are
independent of the initial starting shape, i.e. a particular steady
state shape at a certain velocity is always located at the same
position. Furthermore, non-tank-treading croissants are always
almost centered, with only minor deviations away from zero.
These slight deviations in the range from 2 to 4 mm s�1 are
mainly due to some croissants exhibiting minuscule periodic
shape deformations. Moreover, the centroids of tank-treading
croissants occurring at velocities \8 mm s�1 are located near

Fig. 7 Simulation results: (a) average radial positions of the steady states from Fig. 6 as a function of cell velocity for the three different starting shapes.
The lower curves are for steady states forming non-TT croissants and TT croissants, the upper curves are for (TT and non-TT) slippers. Note that the data
points coincide for different starting configurations, showing that the initial shape does not influence the final radial position. We show on the vertical axis
the weighted temporal mean of the radial centroid position of RBCs that assume the same shapes. The vertical error bars depict the total minimal and
maximal position, while the horizontal error bars show the total minimal and maximal cell velocities (in each period of the steady states, respectively).
(b) Extents of the slipper shapes from figure (a) in the flow (x-)direction (length) and along the other two axes, as illustrated by the inset showing the
channel-aligned bounding box around a slipper. The vertical error bars depict the minimum and maximum extents during the periodic contractions,
while the horizontal error bars are the same as in (a).
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but not directly in the center. Their slight off-centered position
is a result of their asymmetry.

In contrast to croissants, slippers are located 0.8 to 1.5 mm
away from the channel’s axis. The minimum position is
attained for velocities near the border of the croissant-only
region in the phase diagram (at around 2 and 3 mm s�1,
compare Fig. 6). Above, the off-center position increases and
seems to converge to a value of around 1.5 mm. The reason for
this increase is that slippers become more elongated and
thinner at higher velocities (up to a certain degree), as shown
in Fig. 7(b) and also observed in previous experiments.23 Thus,
they effectively become thinner in the radial direction and their
centroids can move closer to the wall. We note that the distance
between the wall and the upper side of the slipper approxi-
mately remains the same for all velocities. This also hints at
that the ‘‘optimal’’ off-center position for the slippers is more
than 1.5 mm away from the center, and that this particular value
is due to the smallness of the channel.

5 Comparison between experiments
and simulations
5.1 Comparison of shapes

Considering Fig. 1, the croissants obtained from simulations
and experiments look very similar, although the experimental
shapes appear to be somewhat larger. The reason is diffraction:
the ‘‘true’’ cell border lies in the bright and not within the dark
rim. However, the slippers appear to look qualitatively different.
This is due to the high magnification and numerical aperture of
the objective which results in a small depth of field of around
1 mm. Cell borders above and below the middle plane are therefore
blurred out and become invisible while the mid-plane cut becomes
dominant. Thus, for comparison we should use the middle cross-
section of the numerically obtained shapes. Here we find good
agreement (compare Fig. 1(g) with Fig. 1(e)).

5.2 Comparison of the phase diagrams

A qualitative comparison between the phase diagrams of steady
states from the experiments (Fig. 3(a)) and the simulations
(Fig. 6) shows a striking resemblance: both exhibit a distinct peak
in the number of croissants at lower velocities (1 to 3 mm s�1) at
the expense of the number of slippers. The latter dominate the
picture at high velocities (47 mm s�1). At intermediate velocities
both shapes coexist and can therefore be observed simultaneously
in the measurements. Moreover, the simulations at very low
velocities showed croissants only if the initial RBC was already
prepared in that state, meaning that in the experiments this shape
is highly unexpected. Indeed, we were not able to clearly classify
most of the observed shapes in that regime as either croissants or
slippers.

Obtaining a direct quantitative comparison requires a trans-
lation of the numerical threshold in Fig. 6 (which is in terms of
the initial offset) into a prediction regarding the fraction of
shapes, because the experimental diagram is in terms of the
observed fraction of shapes. This is done by counting the

fraction of croissants entering the channel with an offset below
the numerical threshold. This fraction corresponds directly to
the predicted fraction of croissant shapes. More precisely, we
first define rtrans as the initial radial offset which separates
croissants from slippers in the simulations by using the black
line in Fig. 6. An exception is the small croissant-only region
(i.e. the interval of the topmost horizontal line in Fig. 6) where
we take rtrans - N. This is consistent with our interpretation
that only croissants exist in this particular interval. One rtrans is
computed for each experimental cell velocity from Fig. 3(a).
Second, each radial position rtrans is projected onto the y-axis
to give ytrans (see Section 2.2) because only the y-offset is known
from experiments. Third, from the experimental offset distri-
bution at the channel entrance (Fig. 4) we can then estimate the
fraction of cells f that enter the channel with an offset below
ytrans. Accordingly, the simulations predict a fraction f of
croissants in the steady state. The value of f can thus be
directly compared with the experimental phase diagram from
Fig. 3(a). This is done once for every starting configuration
employed in the simulations.

Fig. 8 shows this key result of our contribution, i.e. the
predicted fraction of croissants f as a function of the cell
velocity for each starting shape. The vertical error bars depict
the uncertainty in the prediction, whose computation is explained
in the ESI.† They are comparably large in the croissant-only region
because the experimental velocities lie very near its sharp boundary.
The horizontal error bars illustrate the standard deviation su of the
experimentally measured cell velocities. Clearly, we find very good
agreement between the prediction from the simulation and the
experimental observation when considering the slipper starting
shape (Fig. 8(c)). Starting with a discocyte or croissant leads to
slightly more pronounced deviations (Fig. 8(a) and (b)), but still a
satisfactory semi-quantitative agreement is maintained. This
suggests the intuitive conclusion that the starting shapes in the
experiment are closer to the rather asymmetric slippers than to
the highly symmetric discocytes or croissants. Indeed, as
explicitly shown in the ESI,† we only observe non-classifiable
and rather asymmetric ‘‘other’’ shapes at the channel entrance.

As mentioned in the introduction, experimental investiga-
tions with more detailed shape studies are rather scarce. A
comparison of the phase diagrams with the experimental
literature is therefore limited to rough qualitative statements.
Tomaiuolo et al.23 found croissants and ‘‘others’’ for a cell
velocity of 1.1 mm s�1 using l E 5 in a cylindrical tube with
diameter 10 mm. This is in agreement with our results. At
36 mm s�1, slippers but also croissants have been observed.
Since we cannot reach velocities that high, we can neither
confirm nor refute the occurrence of the latter. Extrapolation
of Fig. 8 is dangerous since the Reynolds number at 36 mm s�1

is around Re E 0.24 and thus inertia effects might have
noticeable contributions.93,94 Continuing, Cluitmans et al.26

found croissants and tumbling ‘‘others’’ at 1.1 mm s�1 and
slippers at 13.6 mm s�1 in rectangular channels of 10 mm and
7 mm widths and a height of 10 mm, which is consistent with our
results. The experimental phase diagram presented in ref. 22 and
21 also agrees with our results insofar that slippers occur at higher
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and croissants at lower velocities. Yet, the considered velocities
were higher than 10 mm s�1 and the viscosity ratio was l t 0.27,
i.e. much lower. Furthermore, Fig. 3 in ref. 19 (in vivo experiments)
also showed coexistence of croissants and slippers for velocities
t1 mm s�1 and only croissants in the range 1–2 mm s�1,
matching approximately with our results.

Regarding previous numerical studies, Fedosov et al.4 per-
formed detailed 3D numerical simulations in cylindrical channels
for l = 1. Taking a diameter of 10 mm (translating into a confine-
ment value of w = 0.65 in their work), they varied the average
velocity from around 0.05 mm s�1 to 0.7 mm s�1. They observed a
transition from snaking, to tumbling, to tank-treading slippers and
finally to parachutes (which are very similar to croissants). In our
simulations we found tumbling and tank-treading slippers at
velocities of the order of 0.1 mm s�1, and an increasing frequency
of croissants above. This matches at least qualitatively with
Fedosov et al.’s results. However, they did not vary the initial
condition.

5.3 Comparison of cell positions

Next, we compare the preferred position of the cells in the
steady state. The simulations predict a centered positioning of
croissants (Fig. 7(a)), i.e. both the y- and the z-offsets are nearly
zero. This matches with Fig. 3(b) where a very sharp peak at the
channel center is found for the pressure drops within the
croissant-peak region.

For slippers, the simulations showed an increase of the
radial position of up to around 1.5 mm (Fig. 7(a)). Considering
the y- and z-coordinates separately in Fig. 9, we see that z E 0
and the major offset happens in the y-direction. This is rather
fortunate as the y-offset is also easily accessible in the experi-
ments, contrary to the z-offset. As can be seen in the measured
y-distribution (Fig. 3(b)), we have two off-centered peaks for
slippers. Taking the distribution function for only the slippers,
we extract the positions yl and yr of the two peaks. Exploiting
the �y-symmetry of the channel, the off-centered position is

then computed as (yr – yl)/2, i.e. in essence as the average of the
two peak distances to the central minimum. Fig. 9 compares
these values with the numerical results: the behavior is the
same (an increase with velocity) and the predicted values show
only a small systematic deviation of around E0.3 mm, i.e. of less
than 4% of the RBC diameter 2RRBC. A possible reason is that
the optically recorded boundaries of the RBC and the channel
walls are somewhat blurry (compare the experimental images
in Fig. 1).

5.4 Implications of the comparison

There has been quite some debate in the literature if the
croissant (or parachute) shapes observed via light microscopy
are indeed what they appear to be. Gaehtgens et al.18 (Fig. 4
therein), for example, solidified the flowing RBCs with

Fig. 9 Comparison between the centroid positions from the simulations
(absolute values of the y- and z-coordinates) and experiments (absolute
value of the y-coordinate) for cells that have a TT-slipper shape in the
steady state. Error bars for the simulations as in Fig. 7(a). The horizontal
error bars for the experimental data depict the standard deviation su of
the cell velocities, while the vertical error bars represent the estimated
uncertainty in the position determination.

Fig. 8 Fraction of croissants f predicted by the simulations, once for each starting configuration employed in the simulations: (a) simulations started
with the typical discocyte, (b) with the croissant and (c) with the slipper shape. To allow for a direct comparison, we included the experimental results
from Fig. 3(a) in each diagram (black dashed line). The horizontal error bars depict the standard deviation su of the measured cell velocities (as in Fig. 3(a)),
while the vertical error bars show the uncertainty in the prediction as explained in the ESI.† The lines and shaded areas serve as guides to the eye. See the
main text for further details.
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glutaraldehyde and found that the croissant-like shapes were
actually slipper-like. Skalak and Branemark38 pointed out that
such shapes can also be ‘‘edge-on’’ discocytes with a flattened
back. Ultimately, to uniquely identify the forms one needs
some method to record the full 3D geometry of the flowing
cells (e.g. as in ref. 16, 27, 33 and 95–99). This is unfortunately
very hard to implement in the present experimental setup.
However, this missing information is complemented here by
the numerical simulations which are in good agreement with
the experiments and thus our interpretation of the shapes as
croissants should be correct.

The good agreement furthermore implies that our red blood
cell model and simulation method is fully appropriate for
describing the flow of RBCs in a straight microchannel. More
sophisticated methods including e.g. thermal fluctuations or
surface viscosity4,25,53,54,100,101 are, at least for the present
geometry, not required. For croissants this is intuitive since
membrane movement such as tank-treading is absent, for the
tank-treading slippers it is somewhat less obvious.

6 Summary & conclusion

To summarize, we have performed in vitro experiments and 3D
simulations of healthy red blood cells flowing in a microchannel.
The viscosity ratio was approximately 5 and the flow velocities
ranged from around 0.1 mm s�1 to 10 mm s�1 in both method-
ologies, corresponding to the typical conditions prevailing in the
microvascular system. We found that both the flow velocity as well
as the initial starting configuration (shape and offset from channel
center) have a major impact on the final steady state of the cells.
Using three different starting shapes (discocyte, croissant and
slipper), we constructed the corresponding phase diagrams via
simulations. In most cases the cells assumed one out of two
different forms: either a centered croissant or an off-centered
slipper. Interestingly, for most velocities bistability, i.e. a depen-
dence of the final shape on the initial condition, was observed.
Only in a small range of velocities (at around E1 mm s�1) was the
final shape found to be always a croissant. The experimental
diagram showed very good agreement with the numerical result,
especially when considering the simulations that used the rather
asymmetric slipper as starting shape.

We thus conclude that the employed numerical RBC model
can sensibly describe the cell behavior in the presented setup.
Moreover, since we used physiological viscosity ratios and flow
velocities, we speculate that croissants and slippers can occur
in the microvasculature at the same set of system parameters
not just as transients but rather that both are states which are
intrinsically assumed by the cells. Our results are important for
applications where the cells should be in a specific state (e.g. in
lab-on-a-chip devices) and allow for a comprehensive validation
of numerical models.
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4 D. A. Fedosov, M. Peltomäki and G. Gompper, Soft Matter,

2014, 10, 4258–4267.
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18 P. Gaehtgens, C. Dührssen and K. H. Albrecht, Blood Cells,
1980, 6, 799–817.

19 Y. Suzuki, N. Tateishi, M. Soutani and N. Maeda, Micro-
circulation, 1996, 3, 49–57.

20 T. W. Secomb, B. Styp-Rekowska and A. R. Pries, Ann.
Biomed. Eng., 2007, 35, 755–765.

Paper Soft Matter



2042 | Soft Matter, 2018, 14, 2032--2043 This journal is©The Royal Society of Chemistry 2018

21 M. Faivre, PhD thesis, Université Joseph-Fourier – Greno-
ble I, Grenoble, 2006.

22 M. Abkarian, M. Faivre, R. Horton, K. Smistrup, C. A. Best-
Popescu and H. A. Stone, Biomed. Mater., 2008, 3, 034011.

23 G. Tomaiuolo, M. Simeone, V. Martinelli, B. Rotoli and
S. Guido, Soft Matter, 2009, 5, 3736–3740.

24 G. Tomaiuolo and S. Guido, Microvasc. Res., 2011, 82, 35–41.
25 G. Prado, A. Farutin, C. Misbah and L. Bureau, Biophys. J.,

2015, 108, 2126–2136.
26 J. C. A. Cluitmans, V. Chokkalingam, A. M. Janssen,

R. Brock, W. T. S. Huck and G. J. C. G. M. Bosman, BioMed
Res. Int., 2014, e764268.

27 S. Quint, A. F. Christ, A. Guckenberger, S. Himbert, L. Kaestner,
S. Gekle and C. Wagner, Appl. Phys. Lett., 2017, 111, 103701.

28 R. M. Hochmuth, R. N. Marple and S. P. Sutera, Microvasc.
Res., 1970, 2, 409–419.

29 V. Seshadri, R. M. Hochmuth, P. A. Croce and S. P. Sutera,
Microvasc. Res., 1970, 2, 434–442.

30 V. P. Zharov, E. I. Galanzha, Y. Menyaev and V. V. Tuchin,
J. Biomed. Opt., 2006, 11, 054034.

31 G. Tomaiuolo, V. Preziosi, M. Simeone, S. Guido,
R. Ciancia, V. Martinelli, C. Rinaldi and B. Rotoli, Ann.
Ist. Super. Sanita, 2007, 43, 186–192.

32 S. Guido and G. Tomaiuolo, C. R. Phys., 2009, 10, 751–763.
33 S. S. Gorthi and E. Schonbrun, Opt. Lett., 2012, 37,

707–709.
34 L. Lanotte, G. Tomaiuolo, C. Misbah, L. Bureau and

S. Guido, Biomicrofluidics, 2014, 8, 014104.
35 G. Tomaiuolo, L. Lanotte, R. D’Apolito, A. Cassinese and

S. Guido, Med. Eng. Phys., 2016, 38, 11–16.
36 V. Clavera, O. Aouane, M. Thiébaud, M. Abkarian,
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