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The emerging field of self-driven active particles in fluid environments has recently created significant
interest in the biophysics and bioengineering communities owing to their promising future for biomedical
and technological applications. These microswimmers move autonomously through aqueous media, where
under realistic situations they encounter a plethora of external stimuli and confining surfaces with peculiar
elastic properties. Based on a far-field hydrodynamic model, we present an analytical theory to describe the
physical interaction and hydrodynamic couplings between a self-propelled active microswimmer and an elastic
interface that features resistance toward shear and bending. We model the active agent as a superposition of
higher-order Stokes singularities and elucidate the associated translational and rotational velocities induced by
the nearby elastic boundary. Our results show that the velocities can be decomposed in shear and bending
related contributions which approach the velocities of active agents close to a no-slip rigid wall in the steady
limit. The transient dynamics predict that contributions to the velocities of the microswimmer due to bending
resistance are generally more pronounced than those due to shear resistance. Bending can enhance (suppress) the
velocities resulting from higher-order singularities whereas the shear related contribution decreases (increases)
the velocities. Most prominently, we find that near an elastic interface of only energetic resistance toward shear
deformation, such as that of an elastic capsule designed for drug delivery, a swimming bacterium undergoes
rotation of the same sense as observed near a no-slip wall. In contrast to that, near an interface of only
energetic resistance toward bending, such as that of a fluid vesicle or liposome, we find a reversed sense of
rotation. Our results provide insight into the control and guidance of artificial and synthetic self-propelling active
microswimmers near elastic confinements.
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I. INTRODUCTION

Artificial nano- and microscale machines hold great po-
tential for future biomedical applications such as precision
nanosurgery, biopsy, or transport of radioactive substances to
tumor sites [1–3]. These active particles have the ability to
move autonomously in biofluids and could reach inaccessible
areas of the body to perform delicate and precise tasks. Recent
advances in the field have provided a fundamental understand-
ing of various physical phenomena arising in active matter
systems [4–12], which exhibit strikingly different behavior
than their passive counterparts. Suspensions of active agents
display fascinating collective behavior and unusual spatiotem-
poral patterns, including propagating density waves [13–15],
motility-induced phase separation [16–20], and the emergence
of active turbulence [21–26].

While passive particles can be set into motion under the
action of an external field, active particles self-propel by
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converting energy from their environment into mechanical
work. At low Reynolds numbers, microswimmers have to
employ effective self-propulsion mechanisms that break the
time-reversal symmetry of the Stokes flow [4], a property
commonly referred to as Purcell’s scallop theorem [27–30].
For instance, many biological microswimmers perform a
nonreciprocal deformation cycle of their body via, e.g., ro-
tating flagella or beating cilia [31–34], whereas synthetic
microswimmers move via phoretic effects caused by their
asymmetric surface properties [35–43], or by nonreciprocal
deformation of their shape [44–55].

In many biologically relevant situations, motion occurs
in the presence of surfaces that significantly modify the hy-
drodynamic flows and thereby strongly affect the transport
properties, function, and survival of suspended particles and
microorganisms. Confining boundaries play an important role
in many engineering and biological processes ranging from
the rheology of colloidal suspensions [56–58] to the transport
of nanoparticles and various molecules through micro- and
nanochannels [59,60]. Moreover, microswimmers encounter
in their natural habitats a plethora of different types of
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surfaces with various geometric and elastic properties. Ex-
amples include sperm cells in the female reproductive tract
[61], bacterial pathogens in microvasculature channels [62],
or bacteria in biofilms [63]. Thus, surface related effects on
their motility may entail important consequences for a large
number of biological systems, including biofilm formation,
bacterial adhesion, and microbial activity [64,65].

Transport properties of active agents near a no-slip rigid
planar wall reveal various interesting features [66–83], includ-
ing their escape from the wall, a stationary hovering state,
or gliding along the boundary maintaining a constant orienta-
tion during their navigation. Interestingly, flagellated bacteria
display circular swimming trajectories close to surfaces as a
consequence of hydrodynamic couplings [84]. Their swim-
ming direction can be qualitatively influenced by the nature
of the boundary conditions at the interface such that, e.g., the
circular motion is reversed at a free air-liquid interface when
compared to a no-slip wall [85]. Bacterial swimming in the
close vicinity of a boundary has been addressed theoretically
using a two-dimensional singularity model combined with
a complex variable approach [86], a resistive force theory
[87], or a multipole expansion technique [85]. Further, it
has been shown that the presence of a nearby wall can lead
to a change in the waveform assumed by actuated flagella
causing a strong alteration of the resulting propulsive force
[88]. Under applied shear flow, swimming bacteria [89–95]
and sperm cells [96–98] near surfaces may inhibit their cir-
cular motion and exhibit rheotaxis leading to motion against
imposed shear flow. Likewise, the rheotactic behavior of a
self-diffusiophoretic particle has been investigated numeri-
cally by means of boundary integral simulations [99]. Di-
rect measurements of the flow field generated by individual
swimming E. coli both far from and near a solid surface have
revealed the relative importance of fluid dynamics and rota-
tional diffusion in bacterial locomotion [100]. More recently,
it has been shown that E. coli bacteria use transient adhe-
sion to nearby surfaces as a generic mechanism to regulate
their motility and transport properties in confinements [101].
Remarkably, a nearby wall alone can enable self-phoresis
of homogeneous and isotropic active particles [102]. The
behavior of self-propelled nano- and micro-rods in a channel
has further been investigated theoretically and numerically
[103–109].

Unlike fluid-fluid or fluid-solid interfaces, elastic bound-
aries generically stand apart because they endow the system
with memory. Such an effect results in a long-lasting anoma-
lous subdiffusive behavior on nearby particles [110–113]. The
emerging subdiffusion can significantly enhance residence
time and binding rates and thus may increase the probability
to trigger the uptake of particles by living cell membranes via
endocytosis [114,115]. Moreover, theoretical investigations
of model microswimmers immersed in an elastic channel
have predicted an enhancement in swimming speed as the
swimmers deform the flexible boundaries via hydrodynamic
flows [116]. In addition, it has been demonstrated that recip-
rocal motion close to a deformable interface can circumvent
the scallop theorem and result in a net propulsion of mi-
croswimmers at low Reynolds numbers [117]. Theoretically,
the motion of a passive particle near a fluid membrane pos-
sessing surface tension [118,119], bending resistance [120],

or surface elasticity [121,122] has thoroughly been studied.
The corresponding diffusion coefficient in the steady limit is
found to be universal and identical to that predicted near a
hard wall with no-slip boundary conditions [121].

Here, we investigate the influence of nearby elastic bound-
aries possessing resistance toward shear and bending on the
dynamics of microswimmers at low Reynolds number. Our
analytical approach is based on the far-field hydrodynamic
multipole representation of active microswimmers and valid
in the small-deformation regime. We find that the shear- and
bending related contributions to the overall induced transla-
tional and rotational velocities resulting from the hydrody-
namic interactions with an elastic interface may have promo-
tive or suppressive effects. In the steady limit, the swimming
velocities are found to be independent of the membrane elastic
properties and to approach the corresponding values near a
no-slip wall.

The remainder of the paper is organized as follows. In
Sec. II, we present the governing equations of low-Reynolds-
number fluid motion and introduce, in the small deformation
regime, a relevant model for an elastic interface featuring
resistance toward both shear and bending. In addition, we
describe in terms of the multipole expansion of the Stokes
equations the self-generated flow field induced by an active
microswimmer near an elastic interface. We then evaluate in
Sec. III the induced swimming velocities due to hydrody-
namic interactions with the interface and discuss the interplay
between shear and bending deformation modes, as well as
their corresponding roles in the overall dynamics. Concluding
remarks are contained in Sec. IV. Some mathematical details,
which are not essential for the understanding of the key
messages of our analytical approach, are relegated to the
Appendices.

II. THEORETICAL DESCRIPTION

We consider the behavior of an axisymmetric micro-
swimmer near a planar elastic interface of infinite extent in
the xy plane, i.e., the z direction is directed normal to that
plane. The swimmer is modeled as a prolate spheroid of short
semiaxis a and long semiaxis c, trapped above the elastic
interface at position z = h. Here, we adopt a local coordinate
system attached to the swimmer such that θ ∈ [−π/2, π/2]
is the pitch angle and ϕ ∈ [0, 2π ) is the azimuthal orientation
in the xy plane (see Fig. 1 for a graphical illustration of the
system setup).

We model the swimming behavior in the far-field limit
(i.e., c � h) by using a combination of fundamental solutions
to the Stokes equations in the vicinity of an elastic interface
[123,124]. Further details on the swimmer model are provided
after stating the exact Green’s functions for a point-force
singularity near a planar elastic boundary and derivation of
the corresponding higher-order singularities that are obtained
via a multipole expansion (see Sec. III).

A. Low-Reynolds-number hydrodynamics:
Stokes equations

For a viscous, incompressible Newtonian fluid, the Navier-
Stokes equations in the overdamped, low-Reynolds-number
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FIG. 1. Illustration of the system setup. An axisymmetric active
microswimmer modeled as a prolate spheroid is trapped at z = h
above an elastic interface infinitely extended in the xy plane. The
lengths of the short and long semiaxes are denoted by a and c,
respectively. Setting the orientation of the swimmer, the unit vector
ê points along the symmetry axis of the swimmer. The pitch an-
gle of the swimmer relative to the horizontal plane is denoted by
θ ∈ [−π/2, π/2] (the complement of the polar angle in spherical
coordinates). On both sides of the elastic interface, the surrounding
fluid is Newtonian and characterized by the same dynamic viscosity
η. The figure shown in the inset is a top view of the local reference
frame associated with the microswimmer, where ρ0 is the radial
distance and ϕ ∈ [0, 2π ) is the azimuthal orientation.

limit simplify to the time-independent Stokes equations [6,27]

η∇2v(r) − ∇p(r) + f B(r) = 0, (1a)

∇ · v(r) = 0, (1b)

where r denotes the spatial coordinate, η is the shear viscosity,
v denotes the fluid velocity, p is the pressure field, and f B here
represents the body force density acting on the fluid domain
by the immersed objects.

The fundamental solution of the Stokes equations for a
point-force singularity f B = f δ(r − r0) (Stokeslet) placed at
position r0 in an otherwise quiescent unbounded (infinite)
fluid domain is expressed in terms of the free-space Green’s
function given by the Oseen tensor [125,126]. Assuming that
the point force is directed along the unit vector ê such that
f = f ê, the induced flow and pressure fields read

v∞
S (r) = f

8πη
G∞(r, r0; ê), p∞

S (r) = f

4π
P∞(r, r0; ê),

(2)

where the Stokeslet solution is given by G∞(r, r0; ê) =
(ê + (ê · ŝ) ŝ)/s, with s = r − r0, s = |s| denoting the distance
from the singularity position, and ŝ = s/s. Likewise, the cor-
responding solution for the pressure field is P∞(r, r0; ê) =
ê · ŝ/s2.

B. Model for the elastic interface

The interface is modeled as a two-dimensional elastic sheet
made of a hyperelastic material featuring resistance toward
both shear and bending. Shear elasticity of the interface is de-
scribed by the well-established Skalak model [127], which is
commonly utilized as a practical model for the description of
red blood cell membranes [128–131]. The interface resistance
toward bending is described by the Helfrich model [132–135].

For an elastic interface infinitely extended in the xy plane,
the linearized tangential and normal traction jumps across the
interface due to shear and bending deformation modes are
expressed in terms of the displacement field u of the interface
relative to the initial planar configuration via [110]

[σz j] = −κS

3
[
‖u j + (1 + 2C)∂ jε], j ∈ {x, y}, (3a)

[σzz] = κB
2
‖uz, (3b)

where κS is the shear modulus, C = κA/κS denotes the Skalak
parameter (with the area expansion modulus κA), and κB

is the bending modulus. Here we use the notation [σi j] =
σi j (z = 0+) − σi j (z = 0−) to denote the jump in the viscous
stress tensor across the elastic interface. In addition, ε =
∂xux + ∂yuy denotes the dilatation function, and 
‖ = ∂2

x + ∂2
y

stands for the Laplace-Beltrami operator [136]. The normal
components of the hydrodynamic stress tensor are expressed
in the Cartesian coordinate system in the usual way as σz j =
−pδz j + η(∂ jvz + ∂zv j ).

To relate the displacement of the elastic interface to the
fluid velocity field, we impose a hydrodynamic no-slip bound-
ary condition. The latter, in Fourier space, takes a particularly
simple form in the small-deformation regime. Specifically
[118],

v|z=0 = iω u, (4)

with ω being the frequency in the Fourier domain. Accord-
ingly, the components of the fluid velocity field evaluated
at the surface of reference z = 0 are assumed to coincide
with those of the material points composing the deformable
interface. The particular case of zero frequency corresponds to
the “stick” boundary condition which applies for an infinitely-
extended rigid wall [121]. It is worth mentioning that, if the
elastic interface undergoes a larger deformation, the no-slip
condition stated by Eq. (4) takes a nonlinear form because the
condition has to be applied at the deformed interface. This sit-
uation has been considered, for instance, in Refs. [137–144].
Since our attention here is restricted to the system behavior
in the small-deformation regime, for which |u| � h, applying
the no-slip boundary condition at the position of the undis-
placed interface is appropriate for our theoretical analysis.

As described in detail in Refs. [110,112], the behavior of
a particle close to an elastic interface can conveniently be
characterized in terms of the two dimensionless parameters

β = 6Bhηω

κS
, βB = 2h

(
4ηω

κB

)1/3

, (5)

where B = 2/(1 + C). Note that both β and β3
B ∝ ω, and can

thus be viewed as dimensionless frequencies associated with
shear and bending deformation modes, respectively.
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The exact Green’s functions for a point-force singularity
acting close to an elastic interface possessing shear and bend-
ing rigidities have recently been calculated by some of us
(see, e.g., Refs. [110,113] for details of the derivation). The
ê-directed Stokeslet near the elastic interface can be obtained
from the tensorial description of the Green’s function via

G(r, r0; ê) = 8πηG(r, r0) · ê. (6)

The frequency-dependent Green’s functions G associated
with a point force exerted at position r0 above an elastic
interface can be derived using a standard two-dimensional
Fourier-transform technique [118,120] and applying the un-
derlying boundary conditions at the planar surface of refer-
ence. Accordingly, the Green’s functions can be expressed
in terms of convergent infinite integrals over the wave num-
ber. Explicit analytical expressions of the components of the
Green’s functions due to a Stokeslet near an elastic interface
are listed for convenience in Appendix A.

C. Multipole expansion

The flow field generated by a microswimmer can be de-
composed into a multipole expansion of the solution of the
Stokes equations [Eq. (1)] near an elastic interface. Then, the
linearity of the Stokes equations permits the description of
the far-field flow induced by a microswimmer in terms of a
superposition of different singularity solutions [124]. While
the leading-order flow field of a driven particle is a force
monopole (Stokeslet) field which decays as s−1, force- and
torque-free microswimmers typically create a force dipole
field in leading order [4,6] which decays as s−2. The next-
higher-order singularities are the force quadrupole, source
dipole, and rotlet dipole, which all decay as s−3. The Green’s
functions for higher-order singularities can be obtained as
derivatives of the Stokeslet solution [123]. For example, for
a force dipole (D),

GD(r, r0; ê, a) = (a · ∇0)G(r, r0; ê), (7)

wherein ∇0 denotes the nabla (gradient) operator taken with
respect to the singularity position r0. The force quadrupole
(Q) can then be determined from the force dipole as

GQ(r, r0; ê, a, b) = (b · ∇0)GD(r, r0; ê, a). (8)

In addition, we define the source dipole (SD) singularity
which can be derived from a singular potential solution satis-
fying the Laplace equation [124]. It can be expressed in terms
of the Stokeslet solution via

GSD(r, r0; ê) = − 1
2 ∇2

0 G(r, r0; ê). (9)

Further, we define the rotlet dipole (RD) singularity as

GRD(r, r0; ê, c) = c · ∇0GR(r, r0; ê), (10)

where the Green’s function for the rotlet (R) is obtained as

GR(r, r0; ê) = 1
2 [GD(r, r0; b, a) − GD(r, r0; a, b)], (11)

where a and b are unit vectors with a × b = ê (× denotes the
cross product). Note that the rotlet is the leading-order flow
field of a force-free particle but where an external torque is
applied. The flow field due to a rotlet dipole can further be

expanded as a combination of two force quadrupoles as

GRD(r, r0; ê, c) = 1
2 [GQ(r, r0; b, a, c) − GQ(r, r0; a, b, c)].

Expressions of the higher-order Stokes singularities in an
unbounded (infinite) fluid are provided in Appendix B.

In the presence of external forces and torques acting
on the microswimmer, the Stokeslet, G(r, r0; ê), and rotlet
GR(r, r0; ê), solutions have to be added to our description.
Collecting results, the self-generated flow field induced by an
axially symmetric microswimmer initially located at position
r0 and oriented along the direction of the unit vector ê can be
written up to third order in inverse distance from the swimmer
location as

v(r) = vS(r) + vR(r) + vD(r) + vSD(r) + vQ(r) + vRD(r),
(12)

where we have defined the velocities

vS(r) = αS G(ê), vR(r) = αR GR(ê),

vD(r) = αD GD(ê, ê), vSD(r) = αSD GSD(ê),

vQ(r) = αQ GQ(ê, ê, ê), vRD(r) = αRD GRD(ê, ê),

not writing the dependence of the flow singularities on r and
r0 explicitly any longer.

The Stokeslet coefficient αS has dimension of
(length)2(time)−1, the rotlet coefficient αR and dipolar
coefficient αD have dimension of (length)3(time)−1, whereas
the remaining higher-order multipole coefficients αSD, αQ, and
αRD have dimensions of (length)4(time)−1. The magnitude
and sign of these coefficients depend on the propulsion
mechanism as well as on the swimmer shape. For a valuable
discussion on the physical meaning and interpretation of these
singularities, we refer the reader to recent works by Spagnolie
and Lauga [124] and Mathijssen et al. [145].

III. SWIMMING NEAR AN ELASTIC INTERFACE

In the presence of confining boundaries, the swimming
direction ê of the microswimmer and its distance h from
the boundary dictate the hydrodynamic flows, as sketched in
Fig. 1. The orientation ê is described by the unit vector

ê = (cos θ cos ϕ, cos θ sin ϕ, sin θ ), (13)

where, again, θ denotes the pitch angle (such that θ = 0
corresponds to a swimmer that is aligned parallel to the
interface), and ϕ is the azimuthal orientation that we, without
loss of generality, set initially to zero.

The total self-generated flow field of the swimmer ex-
pressed by Eq. (12) can be decomposed into terms of the bulk
contribution v∞ and a correction v∗ that is required to satisfy
the boundary conditions at the elastic interface:

v = v∞ + v∗. (14)

The latter encompasses the Stokeslet contribution to the flow
field that we have determined in previous works [110,146]
in addition to the higher-order singularity solutions that we
calculate here. It is worth emphasizing that v∞ is the sum of
the bulk flow fields of the different multipoles such that

v∞ = lim
β,βB→∞

v. (15)
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The induced translational and rotational velocities due to
the fluid-mediated hydrodynamic interactions between the
elastic interface and a microswimmer of prolate ellipsoidal
shape located at position r0 are provided by Faxén’s laws
[126] as

vHI = v∗(r)|r=r0 , (16a)

�HI = 1
2∇ × v∗(r) + �ê × (E∗(r) · ê)|r=r0 . (16b)

These expressions have been restricted to leading order in
swimmer length c. Here, E∗ = [∇v∗ + (∇v∗)T]/2 is the
rate-of-strain tensor associated with the reflected flow, with
T denoting the transpose. Further, � = (γ 2 − 1)/(γ 2 + 1) ∈
[0, 1) is a shape factor (also known as the Bretherton constant
[147,148]) that depends on the aspect ratio γ of the prolate
spheroidal microswimmer, defined as the ratio of major to
minor semiaxes, i.e., γ = c/a � 1. It vanishes for a sphere
and approaches 1 for needlelike particles of large aspect ratio.
Higher-order correction terms in � to the induced hydrody-
namic fields can be obtained using the multipole method (see,
e.g., Ref. [146]).

Due to the linearity of the Stokes equations [Eqs. (1)] we
can consider the effect of each higher-order singularity on the
swimming behavior independently. Thus, in the following we
provide solutions for the translational and rotational veloci-
ties, vHI and �HI, induced by fluid-mediated hydrodynamic
couplings of the individual contributions with the nearby
elastic boundary.

Remarkably, the total velocities due to hydrodynamic in-
teractions with an elastic interface endowed simultaneously
with both shear and bending resistances can be written as
a superposition of the velocities induced by hydrodynamic
interactions with an interface of pure shear (βB → ∞) and
pure bending (β → ∞) resistances. Accordingly, the total
wall-induced linear and angular velocities can be obtained by
evaluating both contributions independently:

vHI = vHI|S + vHI|B, (17a)

�HI = �HI|S + �HI|B, (17b)

where the subscripts S and B stand for shear and bending,
respectively. However, it is worth mentioning that this is
only true for a planar elastic interface. For curved interfaces,
a coupling between shear and bending deformation modes
exists [149–153].

Near a no-slip wall, the induced hydrodynamic interactions
of the multipole flow fields created by a microswimmer lo-
cated at a given position and orientation are independent of
time [124] (assuming that the strengths of the singularities
are constant). This is in contrast to an elastic interface where
memory effects can lead to time-dependent contributions
vHI(t ) and �HI(t ). One way to realize such a time dependence
is to assume that the microswimmer is initially at rest with
a given orientation (θ, ϕ) at a distance h from the interface
and suddenly starts to swim and sets the surrounding fluid
into motion at time t = 0. However, we do not allow the
microswimmer to actually move towards the interface but its
position and orientation are kept fixed by applying just the
right external forces Fext and torques T ext, e.g., via optical
traps, aligning magnetic fields, or other micromanipulation

techniques. Denoting by v0 the bulk swimming speed, i.e., in
the absence of the confining interface, the swimming veloc-
ities and rotation rates are related to the external forces and
torques required to trap the swimmer near the interface via(

v0ê + vHI(t )

�HI(t )

)
+ μ ·

(
Fext (t )

T ext (t )

)
= 0. (18)

Note, the forces and torques are zero for t < 0, but finite and
time dependent for t � 0, when the flow fields created by
the microswimmers interact with the elastic interface. Here
μ is the position- and orientation-dependent hydrodynamic
grand mobility tensor of a spheroid near an elastic interface
[146]. We have neglected thermal fluctuations and all possible
steric interactions with the interface. We were able to calculate
vHI(t ) and �HI(t ) for all considered multipole flows. The
solutions for vHI(t ) are shown in Tables VI and VII. Similar
expressions exist for �HI(t ) but they are not shown here
because of their complexity and lengthiness.

In the following we discuss the different contributions
stemming from the different multipoles. Before doing so,
we present typical numbers which we used to produce the
results shown below. The shear and bending properties of the
elastic surface entail a characteristic time scale of shear as
TS = 6ηh/(BκS), in addition to a characteristic time scale of
bending as TB = 8ηh3/κB [110]. Thus, we define the scaled
times τS = t/TS and τB = t/TB associated with shear and
bending deformation modes, respectively. Note that, for h =
[3κB/(4BκS)]1/2, it follows that TS = TB. This corresponds to
the situation in which both shear and bending equally manifest
themselves in the system at intermediate time scales [111]. In
typical situations [128], elastic red blood cells have a shear
modulus κS = 5 × 10−6 N/m, a Skalak ratio C = 100, and
a bending modulus κB = 2 × 10−19 N m. By considering a
dynamic viscosity of the surrounding Newtonian viscous fluid
η = 1.2 × 10−3 Pa s, as well as a micron-sized swimmer of
size a = 10−6 m located above the interface at h = 5a, it fol-
lows that TS 
 0.36 s and TB = 6 s. Therefore, at later times,
bending effects are expected to manifest themselves in a more
pronounced way than shear. For the results presented below,
we use τ := τS = 16τB as the scaled time of the system.

We distinguish contributions relevant for force- and torque-
free swimming and contributions stemming from external
forcing, where particular focus lies on a trapped microswim-
mer in the vicinity of an elastic interface.

A. Force- and torque-free contribution

Here we discuss the swimming behavior of an active agent
near an elastic boundary by following the theoretical frame-
work discussed in Sec. II. We consider different higher-order
singularities that describe features of the swimming motion
of a variety of active agents. In addition to the leading-order
far field of a microswimmer in terms of a force dipole (1/s2),
we consider further details of the propulsion mechanisms that
contribute to the flow field with the order of 1/s3. These
include, for example, contributions of the finite size cell body,
the anisotropy in the swimming mechanism, and the rotation
or counter-rotation of body parts during swimming. Yet, the
importance of the contribution of each of these singularities
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depends strongly on the geometry of the active agent, its
swimming mechanism, and its distance from the elastic in-
terface.

1. Force dipole

The flow field induced by a force dipole, vD(r) =
αD GD(ê, ê), is the leading contribution to describe the hy-
drodynamics of many microswimmers, which are net force
free by definition [27]. The sign of the dipolar coefficient αD

distinguishes between pusher (αD > 0) and puller (αD < 0)
microswimmers. Some bacterial microorganisms, such as E.
coli, exploit (bundles of) helical filaments called flagella for
their propulsion, the rotation of which causes the entire bac-
terium to move forward in a corkscrewlike motion [154–156].
Here, the translation-rotation coupling of the hydrodynamic
friction of the flagellum yields a net propulsion of the swim-
mer. Since these swimmers push out the fluid along their
swimming axis, they are referred to as pushers. Another broad
class of microswimmers, including, for example, the algae
Chlamydomonas reinhardtii [157], pull in (averaged over one
whole swimming stroke) the fluid along the axis parallel to
their swimming direction, and are thus classified as pullers.

Both pushers and pullers may conveniently be modeled,
e.g., via minimal models based on the insertion of force cen-
ters that co-move with the body of the swimmer [158–162],
or as squirmers [163–165]. The latter are driven by prescribed
tangential velocities at their (spherical or ellipsoidal) surfaces
and were introduced to model microorganisms that self-propel
by the beating of cilia covering their bodies [31–33,166].
The squirmer model has been previously used to address,
e.g., the hydrodynamic interaction between two swimmers
[167,168], the influence of an imposed external flow field on
the swimming behavior [169,170], or low-Reynolds-number
locomotion in complex fluids [171–174].

We now return to the mathematical problem and remark
that a tilted force dipole (that is directed along ê) can be
expressed in terms of force dipoles aligned parallel and per-
pendicular to the elastic interface as [85]

GD(ê, ê) = GD(êx, êx ) cos2 θ + GD(êz, êz ) sin2 θ

+ GSS(êx, êz ) sin(2θ ), (19)

where GSS is the symmetric part of the force
dipole, commonly referred to as stresslet, GSS(a, b) =
[GD(b, a) + GD(a, b)]/2. By inserting the Stokeslet solution
(see Appendix A) into Eq. (7), the self-generated dipolar flow
field vD(r) can be evaluated and expressed in terms of infinite
integrals over the wave number. The frequency-dependent
components of the induced translational, vHI, and rotational,
�HI, velocities, of the microswimmer resulting from dipolar
interactions with the elastic interface, as given by Eq. (16),
are listed in integral form in Table IV of Appendix C. The
velocities in Fourier space depend on the dipolar coefficient
αD, the distance h from the elastic interface, the orientation
θ of the swimmer with respect to the interface, as well as
the dimensionless frequencies β and βB, reflecting shear and
bending contributions, respectively.

In Figs. 2(a)–2(c), we present the time evolution of the
induced swimming velocities and rotation rates due to dipolar
hydrodynamic interactions with a planar elastic interface. The

latter has only energetic resistance toward shear (green), only
energetic resistance toward bending (red), or simultaneously
possesses both shear and bending resistances (black). Here,
we consider a spheroidal swimmer with an aspect ratio γ = 4
(corresponding to a shape factor � = 15/17), as measured
experimentally for the bacterium Bacillus subtilis [175]. The
swimmer is inclined by a pitch angle θ = π/6 with respect to
the horizontal direction. Results are rendered dimensionless
by scaling with the corresponding hard wall limits listed in
Table I. As already mentioned, the total swimming velocity
near a planar interface with both shear and bending resistance
is obtained by linearly superimposing the individual contribu-
tions stemming from each deformation mode.

The translational and rotational velocities of the mi-
croswimmer induced by the presence of the elastic interface
amount to small values at short times (τ � 1), because the
interface is still relatively undeformed and therefore hardly
imposes any elastic resistance toward the flow field induced by
the microswimmer. Consequently, the system exhibits initially
a “bulklike” behavior. For increasing times, such that τ 
 1,
the presence of the elastic interface becomes more noticeable.
The induced swimming velocities monotonically increase in
magnitude before reaching at long times (τ � 1) the steady
limits. These correspond to the velocities induced near a
no-slip wall and are independent of the membrane shear and
bending properties. Therefore, the elasticity of the boundary
only contributes at intermediate time scales to the temporal
changes of the swimming behavior, whereas, in the steady
state, the swimmer essentially experiences the response of
the fully deformed interface that does not change its overall
shape of deformation any longer. It is worth emphasizing that
the hard wall limits are reached (if and) only if the interface
is simultaneously endowed with resistance toward shear and
bending. Interestingly, at intermediate time scales, the shear
related contribution to the rotational velocity [Fig. 2(c)] ex-
ceeds to a certain extent its steady value.

In the steady limit, the sign and magnitude of the swim-
ming velocities are strongly dependent on the dipolar coef-
ficient αD as well as on the pitch angle θ . In this situation,
because vz

HI
D ∝ −αD(3 cos2 θ − 2) for all interface types (see

Table I), it follows that, for a small pitch angle, such that |θ | <

arccos (
√

6/3), a pusher-type microswimmer (αD > 0) tends
to be attracted toward the interface, while a puller (αD < 0)
tends to be repelled away from it. This behavior is purely
hydrodynamic in origin as has been discussed earlier by Lauga
and collaborators for the case of a hard wall [124,176]. In
particular, the hard wall limits are predominately determined
by the bending related contribution. This implies that, for
the dipolar hydrodynamic interactions, the effect due to the
bending rigidity is more pronounced than that due to shear.
In addition, since �y

HI
D ∝ αD sin (2θ ), a pusher-type swimmer

tends to be oriented along the parallel direction (θ = 0 is a
stable fixed point), while the interface tends to align a puller
in the direction normal to the interface (θ = ±π/2). Hence,
in the absence of external trapping, a puller will tend to
swim either toward or away from the interface, depending
on whether it is initially pitched toward (θ < 0) or away
from the interface (θ > 0). Particularly, the extensional flow
and the shear related contribution to the rotation rate van-
ish for a sphere (� = 0). In such a case, the reorientation
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FIG. 2. Evolution of the scaled induced translational and rotational swimming velocities associated with a force dipole (a–c), source
dipole (d–f), force quadrupole (g–i), and rotlet dipole (j–l), resulting from hydrodynamic interactions with a planar elastic interface of pure
shear (green), pure bending (red), or both shear and bending (black) resistances. The swimmer has an aspect ratio γ = 4 and is oriented by a
pitch angle θ = π/6 relative to the horizontal direction. Here, the velocities are scaled by the corresponding hard wall limits listed in Table I,
except that the x component of the rotlet dipolar contribution shown in panel (j) is scaled by αRD/(8h4) (because this component vanishes in
the steady limit). The scaled time is τ := τS = 16τB.

of the swimmer is solely dictated by the interface bending
properties.

In addition to the leading-order contribution of a force
dipole, next-higher-order singularity solutions are useful to
describe details of the propulsion mechanism of an active
agent. The time-dependent translational and rotational ve-
locities induced by higher-order singularities close to the
elastic surface for the start-up motion from static condition are
presented in Table VI of Appendix C, and the steady limits are
shown in Table I.

2. Source dipole

The far-field hydrodynamic flows induced by the finite size
of a swimming object can be described by a source dipole,
vSD(r) = αSDGSD(ê). For the type of microswimmers that
propel themselves by means of activity on their surfaces, as
it is the case for many active colloidal particles [37,38,177] or
ciliated microorganisms [28,34], a source dipolar coefficient

αSD > 0 is expected. In contrast to that, it is expected that
αSD < 0 for nonciliated but flagellated microswimmers [145].

We now consider the scenario of a microswimmer initially
at rest before starting to pump the fluid, in a way analogous to
what we have introduced in the previous discussion regarding
the force dipole contribution. The respective scaled induced
translational and rotational velocities resulting from source
dipolar hydrodynamic interactions exhibit a similar logistic
sigmoid curve varying between 0 and 1 [see Figs. 2(d)–2(f)].
Similar as for the force dipole contribution, at long times the
corresponding values of a no-slip wall are approached. The
bending related contribution to the swimming velocities is
found to be once again more pronounced than that due to shear
resistance.

For all types of interface, the induced normal swimming
velocity in the steady limit can be cast into the form vz

HI
SD ∝

−αSD sin θ . Therefore, the swimmer tends to be attracted
to the interface for αSD > 0 when it is oriented toward it
(θ < 0) and tends to be repelled from the interface otherwise.
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TABLE I. Expressions of the induced translational and rotational swimming velocities resulting from force dipolar, source dipolar, force
quadrupolar, and rotlet dipolar hydrodynamic interactions with a planar elastic interface in the steady limit. Here, n = 2 for the force dipole
and n = 3 for the source dipole and force quadrupole. The swimming velocities near a no-slip hard wall are obtained by linear superposition
of the shear- and bending related contributions.

Interface type hnvHI
x hnvHI

z hn+1�HI
y

Force dipole

Shear 3αD
16 sin(2θ ) − αD

16 (3 cos2 θ − 2) 3αD
64 � sin(2θ ) cos2 θ

Bending 3αD
16 sin(2θ ) − 5αD

16 (3 cos2 θ − 2) 3αD
64 sin(2θ )[4 + �(4 − 3 cos2 θ )]

Hard wall 3αD
8 sin(2θ ) − 3αD

8 (3 cos2 θ − 2) 3αD
32 sin(2θ )[2 + �(2 − cos2 θ )]

Source dipole

Shear − αSD
16 cos θ − 3αSD

8 sin θ − 3αSD
16 cos θ [1 + �(2 − cos2 θ )]

Bending − 3αSD
16 cos θ − 5αSD

8 sin θ − 3αSD
16 cos θ [1 + 2�(2 − cos2 θ )]

Hard wall − αSD
4 cos θ −αSD sin θ − 3αSD

16 cos θ [2 + 3�(2 − cos2 θ )]

Force quadrupole

Shear αQ
32 cos θ (21 cos2 θ − 16) 3αQ

8 sin θ cos2 θ
3αQ
64 cos θ [3� cos4 θ + 2(1 − 2�) cos2 θ + 8�]

Bending 3αQ
32 cos θ (11 cos2 θ − 8) αQ

8 sin θ (15 cos2 θ − 4) 3αQ
64 cos θ [−9� cos4 θ + 2(11 + 8�) cos2 θ + 8(� − 2)]

Hard wall αQ
16 cos θ (27 cos2 θ − 20) αQ

4 sin θ (9 cos2 θ − 2) 3αQ
32 cos θ [−3� cos4 θ + 6(� + 2) cos2 θ + 8(� − 1)]

Interface type h3vHI
y h4�HI

x h4�HI
z

Rotlet dipole

Shear 3αRD
32 sin(2θ ) 3αRD

16 sin(2θ ) − 3αRD
32 (3 cos2 θ − 2)

Bending − 3αRD
32 sin(2θ ) 3αRD

64 sin(2θ )[2 + �(3 cos2 θ − 4)] 3αRD
32 � cos2 θ (4 − 3 cos2 θ )

Hard wall 0 3αRD
64 sin(2θ )[6 + �(3 cos2 θ − 4)] − 3αRD

32 [3� cos4 θ + (3 − 4�) cos2 θ − 2]

Moreover, since �y
HI
SD ∝ −αSD cos θ it follows that θ = π/2

is a stable fixed point for αSD > 0, thus favoring the escape
of the swimmer from the interface in the absence of external
trapping. In contrast to that, θ = −π/2 is a stable fixed
point for αSD < 0, leading to hydrodynamic trapping of the
swimmer near the interface.

3. Force quadrupole

The flow fields generated by a fore-aft asymmetry of the
propulsion mechanism can be captured in terms of a force
quadrupole vQ(r) = αQGQ(ê, ê, ê). Such contributions play a
pivotal role for flagellated microorganisms, such as bacteria
[178] and sperms [179], where an asymmetry between the
length of the forward-pushing cell and the flagella impacts
the propulsive force distribution along the agent and thereby
the hydrodynamic flows. Resulting effects have been found
to induce correlated motion between adjacently swimming
bacteria [178]. It is expected that αQ > 0 for microswimmers
with large cell bodies and short flagella, while αQ < 0 holds
for long-flagellated microorganisms with small cell bodies
[124,145].

Interestingly, the translational velocity vx
HI
Q induced by a

force quadrupole parallel to an elastic surface displays at
intermediate time scales a weakly nonmonotonic behavior
before reaching the steady state [see Fig. 2(g)]. In particular,
the velocity induced by a surface with pure shear resistance
displays the opposite effect to the one induced by a surface
with bending resistance at long times considering the present

set of parameters. This implies that, e.g., if bending resistance
increases the swimming velocity tangent to the interface, then
shear resistance decreases it and vice versa. The induced
translational velocity perpendicular to the elastic boundary
and the rotational velocity quasimonotonically increase in
magnitude over time as resulting from adding both shear and
bending contributions [see Figs. 2(h) and 2(i)]. Notably, the
bending effect is once again more pronounced than the one
associated with shear. In the steady state, the translational and
rotational velocities approach those induced by a rigid wall,
as has been observed for the other higher-order singularity
solutions presented above.

Depending on the types of interface, the force quadrupole
coefficient, and the pitch angle, quadrupolar hydrodynamic
interactions in the steady limit may lead to attraction or
repulsion of swimming microorganisms in a complex way.
Considering an interface with only energetic resistance toward
shear, we find that vz

HI
Q ∝ αQ sin θ . Thus, the swimmer tends

to be repelled from the interface when αQ and θ have both
the same sign, and tends to be attracted toward the interface
otherwise. An analogous discussion holds as well for an
interface with only energetic resistance toward bending, or
for an interface with both shear and bending deformation
modes, provided that |θ | < arccos (2

√
15/15) in the former

and |θ | < arccos (
√

2/3) in the latter case.
Next, considering an interface with energetic resistance

only toward shear, the rotation rate in the steady state �y
HI
Q ∝

αQ cos θ . Thus, the swimmer in the absence of external trap-
ping tends to rotate toward the interface when αQ > 0, and
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away from the interface when αQ < 0. For an elastic interface
possessing pure bending resistance, the swimmer may also
assume in the steady state an oblique alignment along a pitch
angle θ = ±θ� , where

θ� = arccos

⎛
⎝1

3

√
8 + 11

�
−

√
136 + 32

�
+ 121

�2

⎞
⎠.

Consequently, for αQ > 0, force quadrupolar hydrodynamic
interactions tend to orient the swimmer along θ = −θ� when
θ < θ� , and along θ = π/2 otherwise. In contrast to that, for
αQ < 0, the swimmer tends to be reoriented toward θ = θ�

when θ > −θ� , and along θ = −π/2 otherwise. An analo-
gous discussion holds when the interface is endowed with
both shear and bending resistances in the steady limit (hard
wall), where the oblique alignment in this situation is found
to be along

θ� = arccos

⎛
⎝

√
1 + 2

�
−

√
11

3
+ 4

3�
+ 4

�2

⎞
⎠.

4. Rotlet dipole

In addition, the flow field produced by flagellated microor-
ganisms can be altered by rotation of their body parts, such
as the rotation of their flagella bundle and the counter-rotation
of the cell body in E. coli bacteria [84]. The induced flow
far field can be included at lowest order in terms of a rotlet
dipole, vRD(r) = αRD GRD(ê, ê). A tilted rotlet dipole can
conveniently be expanded as a combination of rotlet dipoles
orientated parallel and perpendicular to the interface as

GRD(ê, ê) = GRD(êx, êx ) cos2 θ + GRD(êz, êz ) sin2 θ

+ GRR(êx, êz ) sin(2θ ),
(20)

where GRR(a, b) = [GRD(a, b) + GRD(b, a)]/2 denotes the
symmetric part of the rotlet dipole. Similar to the force
quadrupole contribution, the induced swimming velocity par-
allel to the elastic surface displays a nonmonotonic behav-
ior before approaching zero at long times [see Fig. 2(j)].
In addition, the shear- and bending related parts may have
opposite contributions to the overall translational velocity
tangent to the interface. At long times, again the velocities of a
microswimmer induced by a rigid, no-slip wall are recovered.

Interestingly, the rotation rate around the swimmer body
is found to be shear dominated where bending does not play
a significant role [Fig. 2(k)]. Moreover, the rotlet-dipolar hy-
drodynamic interactions induce a nonvanishing rotation rate
about an axis perpendicular to the interface [see Fig. 2(l)].
This naturally leads in the absence of external trapping to
an overall “swimming in circles,” as has been previously
reported for E. coli near walls [84,180] and explained via
corresponding theoretical studies that include phenomeno-
logical representations of the rotating flagella [81,181]. As
this component vanishes for the other singularities discussed
above, we thus expect the introduction of a rotlet dipole
to be the simplest possible hydrodynamic modeling of this
circling behavior near surfaces. Remarkably, this rotation rate
is independent of the shape factor � in the shear related part

but vanishes for a sphere (� = 0) in the bending related part.
Considering a swimmer that is aligned parallel to the interface
(θ = 0) in the steady limit, we obtain

�z
HI
RD

∣∣
S = −3αRD

32h4
, (21a)

�z
HI
RD

∣∣
B = 3αRD

32h4
�, (21b)

�z
HI
RD

∣∣
S+B = −3αRD

32h4
(1 − �). (21c)

Therefore, assuming that αRD > 0, circular motion is expected
to be clockwise (when viewed from top) near an interface
with pure shear or with both shear and bending rigidities
[Eqs. (21a) and (21c)], and counterclockwise near an interface
with pure bending [Eq. (21b)]. This is in agreement with
the behavior observed for a torque-free doublet of counter-
rotating spheres around its center near an elastic interface
[182]. It is worth mentioning that, in the steady limit, the sys-
tem behavior near an interface with pure bending resistance
is analogous to that near a flat fluid-fluid interface separating
two immiscible fluids with the same viscosity contrast.

B. Contributions due to external forces and torques

Nature offers a plethora of external stimuli and forces
that impact the swimming motion of active agents. Examples
include gravitational fields [183–186]. The far-field hydrody-
namics of externally trapped self-propelled particles near elas-
tic boundaries can readily be captured in terms of a Stokeslet
and rotlet solution to the Stokes equation. The corresponding
translational and rotational velocities as functions of time as
well as the steady limits are presented in Tables II and VI.

1. Stokeslet

In the presence of an external force, the Stokeslet singular-
ity can be used to capture the associated hydrodynamic flow
[157] and calculate the induced velocity of the microswimmer
as vS(r) = αS G(ê). Similar as before, a tilted Stokeslet can be
decomposed into a superposition of Stokeslets directed paral-
lel and perpendicular to the interface as G(ê) = G(êx ) cos θ +
G(êy) sin θ . In contrast to the higher-order singularities used
to model force-free swimming, the Stokeslet introduces a far
field of the fluid flow that decays as 1/h and thus represents
the leading-order contribution.

In Figs. 3(a)–3(c), we present the variations of the induced
swimming velocities due to a Stokeslet singularity acting near
a planar elastic interface with pure shear (green), pure bending
(red), or both shear and bending deformation modes (black),
using the same parameters as in Fig. 2. While resistance
toward shear manifests itself in a more pronounced way for
the translational motion parallel to the interface, the effect of
bending is dominant for the translational motion normal to the
interface and for the rotation rate.

In the remainder of our discussion, we assume that the
Stokeslet coefficient αS > 0. Correspondingly, the swimmer
in the steady state tends to be attracted to the interface when
θ > 0, and repelled from it when θ < 0. Near an interface
with resistance only to shear such that � � 2/3 (or γ �

√
5),

it follows that �y
HI
S ∝ cos θ . Therefore, the swimmer tends

to be reoriented toward the interface (θ = −π/2). In contrast
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TABLE II. Expressions of the induced translational and rotational swimming velocities resulting from Stokeslet and rotlet near an elastic
interface in the quasisteady limit of vanishing frequency, or equivalently for t → ∞. The swimming velocities near a no-slip hard wall are
obtained by linear superposition of the shear- and bending related contributions in the vanishing-frequency limit.

Interface type hvHI
x hvHI

z h2�HI
y

Stokeslet

Shear − 5αS
8 cos θ − αS

4 sin θ
αS
16 cos θ (2 − 3� cos2 θ )

Bending − αS
8 cos θ − 5αS

4 sin θ − αS
16 cos θ [2 + 3�(4 − 3 cos2 θ )]

Hard wall − 3αS
4 cos θ − 3αS

2 sin θ − 3αS
8 � cos θ (1 + sin2 θ )

Interface type h2vHI
y h3�HI

x h3�HI
z

Rotlet

Shear − αR
8 cos θ − 3αR

16 cos θ − αR
8 sin θ

Bending αR
8 cos θ − αR

16 cos θ (2 − 3� sin2 θ ) − 3αR
16 � sin θ cos2 θ

Hard wall 0 − αR
16 cos θ (5 − 3� sin2 θ ) − αR

16 sin θ (2 + 3� cos2 θ )

to that, for � > 2/3, the swimmer tends to align along the
oblique direction given by θ� = arccos [

√
6�/(3�)] when

θ > −θ� , and along θ = −π/2 otherwise. Near an interface
of either pure bending resistance or both shear and bending
resistance, �y

HI
S ∝ − cos θ , leading to swimmer reorientation

away from the interface (θ = π/2). Notably, �y
HI
S vanishes in

the hard wall limit for a spherical microswimmer (� = 0).

2. Rotlet

The far field of an external torque applied to the mi-
croswimmer can be described in terms of a rotlet singularity.
The rotlet related contribution to the induced translational
velocity resulting from hydrodynamic interactions with the
elastic interface has a single nonvanishing component along
the y direction, for which both shear and bending have

equal but opposite contributions to the overall dynamics [see
Fig. 3(d)]. For the induced rotation rates [Figs. 3(e) and
3(f)], the relative importance of shear and bending elasticity
depends strongly on the swimmer geometry and orientation.
Analogously to a rotlet dipole, the induced rotational velocity
normal to the interface is independent of the shape factor
� near an interface of only shear resistance, and vanishes
for a spherical microswimmer (� = 0) near an interface of
resistance only to bending.

C. Long-time decay of swimming velocities

Finally, we briefly comment on the leading-order behavior
of the hydrodynamically induced swimming velocities at long
times in approaching the steady limits. Results are summa-
rized in Table III for various singularity and interface types.
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FIG. 3. Evolution of the scaled swimming velocities associated with a Stokeslet (a–c) and rotlet (d–f) due to hydrodynamic interactions
with an elastic interface showing pure shear (green), pure bending (red), or both shear and bending rigidities (black). Here, the swimmer has
an aspect ratio γ = 4 and an orientation θ = π/6 with respect to the horizontal direction. The velocities are scaled by the corresponding hard
wall values except that the x component of the rotlet contribution is scaled by αR/(8h4). We set τ := τS = 16τB.
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TABLE III. Expressions of the long-time decay of the swimming
velocities due to dipolar, source dipolar, quadrupolar, and rotlet
dipolar hydrodynamic interactions with an elastic interface. Here,
τS = t/TS and τB = t/TB with TS = 6ηh/(BκS) and TB = 8ηh3/κB

are characteristic time scales associated with shear and bending
deformation modes, respectively.

Interface type vHI
x vHI

z �HI
y

Force dipole

Shear τ−2
S τ−3

S τ−3
S

Bending τ
−4/3
B τ−1

B τ
−4/3
B

Source dipole/Force quadrupole

Shear τ−3
S τ−4

S τ−4
S

Bending τ
−4/3
B τ−1

B τ
−4/3
B

Stokeslet

Shear τ−1
S τ−3

S τ−2
S

Bending τ−1
B τ

−1/3
B τ−1

B

Interface type vHI
y �HI

x �HI
z

Rotlet dipole

Shear τ−3
S τ−4

S τ−4
S

Bending τ
−4/3
B τ

−4/3
B τ

−5/3
B

Rotlet

Shear τ−2
S τ−3

S τ−3
S

Bending τ−1
B τ−1

B τ
−4/3
B

For higher-order singularities, the rotation rates are found to
decay similarly or much faster than the translational swim-
ming velocities. Most importantly, the shear related contri-
butions to the swimming velocities experience a faster decay
in time compared to those related to bending. Therefore, the
system behavior is shear dominated at early times, while
bending is expected to play the more dominant role at later
times.

IV. CONCLUSION

We have derived exact solutions for the translational and
angular velocities of a trapped microswimmer in the vicinity
of a deformable surface that features resistance towards bend-
ing and shear. Based on far-field calculations we show that the
velocities can be decomposed into bending and shear related
contributions, which can display opposed behavior; i.e., while
one of them enhances the velocities, the other decreases them
and vice versa. In particular, the elastic properties of the
interface introduce history to the hydrodynamic couplings,
which manifests itself in time-dependent translational and
rotational velocities of the approaching microswimmer. These
velocities strongly depend on the swimming direction, the
distance from the interface, the body shape, and details of the
swimming mechanism encoded in the singularity coefficients.
By accounting for both bending and shear resistances, the

steady-state velocities agree with those of an active agent
close to a planar, rigid wall.

Our results provide a detailed analysis of far-field hy-
drodynamic interactions of trapped, self-propelled particles
with a deformable surface and are expected to contribute to
our understanding of microswimmer motion in their natural
surroundings. Based on the proposed theoretical framework,
future investigations could elucidate the spatiotemporal be-
havior of freely moving microswimmers near an elastic inter-
face and analyze more closely the potential accumulation of
microswimmers at the deformable surface in comparison to a
rigid wall [176]. Moreover, an additional, intrinsic curvature
of the surface can be included in our model [150,187], which
could provide a fundamental ingredient for our understanding
of microswimmer entrapment and accumulation in realistic
biological setups.

ACKNOWLEDGMENTS

We thank Arnold J. T. M. Mathijssen and Maciej Lisicki for
invaluable discussions. A.D.-M.I., A.M.M., and H.L. grate-
fully acknowledge support from the Deutsche Forschungsge-
meinschaft (DFG) through Projects No. DA 2107/1-1, No.
ME 3571/2-2, and No. LO 418/16-3. C.K. gratefully ac-
knowledges support from the Austrian Science Fund (FWF)
via the Erwin Schrödinger Fellowship (Grant No. J 4321-
N27). A.Z. acknowledges support from the FWF through a
Lise Meitner Fellowship (Grant No. M 2458-N36). M.M. and
M.-R.A. acknowledge the support of the National Science
Foundation via Grant No. CMMI-1562871. S.G. thanks the
Volkswagen Foundation and the DFG (Grant No. SFB-TRR
225, Subproject No. B07, 326998133) for financial support.”

APPENDIX A: GREEN’S FUNCTIONS FOR A STOKESLET
NEAR AN ELASTIC INTERFACE

The components of the Green’s functions can be expressed
in terms of convergent improper (infinite) integrals over the
wave number and assume the following form:

Gxx = 1

4π

∫ ∞

0
dq q [G̃+J0(qρ0) + G̃−J2(qρ0) cos(2ϕ)],

Gyy = 1

4π

∫ ∞

0
dq q [G̃+J0(qρ0) − G̃−J2(qρ0) cos(2ϕ)],

Gzz = 1

2π

∫ ∞

0
dq q G̃zzJ0(qρ0),

Gxy = 1

4π

∫ ∞

0
dq q G̃−J2(qρ0) sin(2ϕ),

Grz = i

2π

∫ ∞

0
dq q G̃lzJ1(qρ0),

Gzr = i

2π

∫ ∞

0
dq q G̃zl J1(qρ0),

wherein ρ0 =
√

(x − x0)2 + (y − y0)2 denotes the radial dis-
tance and ϕ := arctan[(y − y0)/(x − x0)] is the azimuthal an-
gle (see inset of Fig. 1). Here Jn(·) represents the nth-order
Bessel function of the first kind [188] and we introduce

G̃±(q, z, ω) := G̃tt (q, z, ω) ± G̃ll (q, z, ω),
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TABLE IV. Expressions of the frequency-dependent evolutions of the induced-swimming velocities resulting from hydrodynamic
interactions with the elastic interface. Here, we have used the abbreviation S = 2Bu2 + (B + 2)iβu − β2.

Velocity component Expression

Force dipole

vx
HI
D

αD sin(2θ )
2h2

∫ ∞
0 du

( NS
D
S + 8u6

8u3+iβ3
B

)
e−2u

vz
HI
D

αD(2−3 cos2 θ )
h2

∫ ∞
0 du

( u3(u−1)
2u+iβ + 4u5(u+1)

8u3+iβ3
B

)
e−2u

�y
HI
D

sin(2θ )
24h3

∫ ∞
0 du

(
u3

S

(
HS

D + AS
D cos2 θ

) + 12u6

8u3+iβ3
B

[8 + �u(4 − 3 cos2 θ )]
)
e−2u

Source dipole

vx
HI
SD − αSD cos θ

h3

∫ ∞
0 du

( NS
SD
S + 4u6

8u3+iβ3
B

)
e−2u

vz
HI
SD − αSD sin θ

h3

∫ ∞
0 du

(
2u4

2u+iβ + 8u5(1+u)
8u3+iβ3

B

)
e−2u

�y
HI
SD − αSD cos θ

h4

∫ ∞
0 du

(
u4

S

(
HS

SD + AS
SD cos2 θ

) + 4u6

8u3+iβ3
B

[1 + �u(2 − cos2 θ )]
)
e−2u

Force quadrupole

vx
HI
Q

αQ cos θ

4h3

∫ ∞
0 du

(
u3

S

(
NS

Q + MS
Q cos2 θ

) + 4u6

8u3+iβ3
B

[4u(2 − 3u) + (15u − 8) cos2 θ ]
)
e−2u

vz
HI
Q

αQ sin θ

h3

∫ ∞
0 du

(
u4

2u+iβ [2(2 − u) + (5u − 8) cos2 θ ] + 4u5(1+u)
8u3+iβ3

B
[2(1 − u) + (5u − 3) cos2 θ ]

)
e−2u

�y
HI
Q

αQ cos θ

8h4

∫ ∞
0 du

(
u4

S

(
W S

Q cos4 θ + AS
Q cos2 θ + HS

Q

) + u6

8u3+iβ3
B

(
W B

Q cos4 θ + AB
Q cos2 θ + HB

Q

))
e−2u

Rotlet dipole

vy
HI
RD

αRD sin(2θ )
h3

∫ ∞
0 du

( NS
RD
4S − 2u6

8u3+iβ3
B

)
e−2u

�x
HI
RD

αRD sin(2θ )
16h4

∫ ∞
0 du

(
u4

S

(
GS

RD + KS
RD cos2 θ

) + 8u6

8u3+iβ3
B

[4(1 − �u) + 3�u cos2 θ ]
)
e−2u

�z
HI
RD

αRD
8h4

∫ ∞
0 du

(
u4

S

(
W S

RD cos4 θ + AS
RD cos2 θ + HS

RD

) + 8�u7

8u3+iβ3
B

[(4 − 3 cos2 θ ) cos2 θ ]
)
e−2u

Stokeslet

vx
HI
S − αS cos θ

h

∫ ∞
0 du

( NS
S

S + 4u5

8u3+iβ3
B

)
e−2u

vz
HI
S − αS sin θ

h

∫ ∞
0 du

(
2u3

2u+iβ + 8u3(u+1)2

8u3+iβ3
B

)
e−2u

�y
HI
S − αS cos θ

h2

∫ ∞
0 du

(
u2

2S

(
HS

S + AS
S cos2 θ

) + 4u5

8u3+iβ3
B

[1 + 2�u + 3� − �(u + 3) cos2 θ ]
)
e−2u

Rotlet

vy
HI
R

αR cos θ

2h2

∫ ∞
0 du

( HS
R

S + 8u5

8u3+iβ3
B

)
e−2u

�x
HI
R

αR cos θ

h3

∫ ∞
0 du

(
u3

4S

(
GS

R + KS
R cos2 θ

) − 4u5

8u3+iβ3
B

(1 − �u + �u cos2 θ )
)
e−2u

�z
HI
R

αR sin θ

h3

∫ ∞
0 du

(
u3

4S

(
HS

R + KS
R cos2 θ

) − 4u6

8u3+iβ3
B

� cos2 θ
)
e−2u

with

G̃ll = 1

4ηq

[
(1 − q|z − h|)e−q|z−h| +

(
2iqh(1 − qh)(1 − qz)

β − 2iqh
+ 8iq5zh4

β3
B − 8i(qh)3

)
e−q(z+h)

]
,

G̃tt = 1

2ηq

(
e−q|z−h| + iBqh

β − iBqh
e−q(z+h)

)
.
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TABLE V. Expressions of the frequency-dependent coefficients appearing in Table IV.

Coefficient Expression

NS
D u2[(2u2 − 4u + B + 2)iβ + 2Bu(u2 − 2u + 2)]

HS
D 3�[2(2u2 − 4u + 2 − B)iβ + 4Bu2(u − 2)] + 6[(4u − B − 4)iβ + 2Bu(2u − 3)]

AS
D 3�[3(−u2 + 2u + B − 1)iβ + 3Bu(−u2 + 2u + 1)]

NS
SD u3(Bu + iβ )(u − 1)

HS
SD 2(Bu + iβ )[1 + 2�(u − 1)]

AS
SD −(Bu + iβ )�(u − 1)

NS
Q −[4iβ(3u2 − 8u + 5 + B) + 4Bu(3u2 − 8u + 7)]

MS
Q (15u2 − 38u + 5B + 23)iβ + Bu(15u2 − 38u + 33)

W S
Q �[6iβ(B − 2 − u2 + 3u) − 6Bu2(u − 3)]

AS
Q 2Bu(15u − 28) + �(iβ(26 − 9B + 12u2 − 38u) + 2Bu(6u2 − 19u + 4)) + iβ(30u − 5B − 46)

HS
Q �[4iβ(2u + B − 2) + 8Bu2] − 24Bu(u − 2) + 4iβ(10 + B − 6u)

W B
Q 24�u(1 − u)

AB
Q 8[15u − 8 + �u(6u − 7)]

HB
Q 32(2 − 3u + �u)

NS
RD 2u3[(1 + B − u)iβ + Bu(3 − u)]

KS
RD �[6Bu(u − 2) − 3iβ(2 + B − 2u)]

GS
RD �[4iβ(2 + B − 2u) − 8Bu(u − 2)] + 16Bu + 4iβ(2 + B)

W S
RD �[3iβ(2 + B − 2u) + 6Bu(2 − u)]

AS
RD �[4iβ(2u − 2 − B) + 8Bu(u − 2)] − 6B(2u + iβ )

HS
RD 4B(2u + iβ )

NS
S u[(u2 − 2u + B + 1)iβ + Bu(u2 − 2u + 3)]

HS
S �[(4u2 − 2u − B − 2)iβ + 2Bu(2u2 − u − 2)] + (2u − 2 − B)iβ + 2Bu(u − 2)

AS
S −�[2(u2 + u − 2 − B)iβ + 2Bu(u2 + u − 4)]

HS
R u2[(2u − 2 − B)iβ + 2Bu(u − 2)]

KS
R �[(−4u + B + 4)iβ − 2Bu(2u − 3)]

GS
R −KS

R − 6Bu − (B + 4)iβ

HS
R −2B(2u + iβ )

The remaining Green’s functions in Fourier space read

G̃zz = 1

4ηq

[
(1 + q|z − h|)e−q|z−h| +

(
2iq3zh2

β − 2iqh
+ 8i(qh)3(1 + qz)(1 + qh)

β3
B − 8i(qh)3

)
e−q(z+h)

]
,

G̃lz = i

4ηq

[
− q(z − h)e−q|z−h| +

(
2i(qh)2(1 − qz)

β − 2iqh
− 8iq4zh3(1 + qh)

β3
B − 8i(qh)3

)
e−q(z+h)

]
,

G̃zl = i

4ηq

[
− q(z − h)e−q|z−h| +

(
− 2iq2zh(1 − qh)

β − 2iqh
+ 8iq4h4(1 + qz)

β3
B − 8i(qh)3

)
e−q(z+h)

]
.

The Green’s functions comprise both bulk contributions
and the frequency-dependent corrections due to the pres-
ence of the elastic interface. The terms involving β and
βB are, respectively, contributions associated with shear
and bending. Moreover, the remaining components of the
Green’s functions can readily be obtained from the usual
transformation relations. Specifically, this means Gxz =

Grz cos ϕ, Gyz = Grz sin ϕ, Gzx = Gzr cos ϕ, Gzy = Gzr sin ϕ,
and Gyx = Gxy. In the quasisteady limit of vanishing fre-
quency (β = βB = 0), the Green’s functions reduce to the
well-known Blake tensor near a no-slip wall [189,190].
Physically, this limit corresponds to an infinitely stiff wall,
for which the displacement field at the interface identically
vanishes.
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TABLE VI. Expressions of the time-dependent evolutions of the induced-swimming velocities due to hydrodynamic interactions with the
elastic interface. Here, ξ (u) = e−2u − e−2u(1+τBu2 ) is a bending related dimensionless function.

Velocity component Expression

Force dipole

vx
HI
D

αD sin(2θ )
2h2

( τS JS
D

8(1+τS )4(2+BτS )2 + ∫ ∞
0 du u3ξ (u)

)
vz

HI
D − αD(2−3 cos2 θ )

2h2

( τS(τ3
S +4τ2

S +6τS+6)
8(τS+1)4 + ∫ ∞

0 du (1 + u)u2ξ (u)
)

Source dipole

vx
HI
SD − αSD cos θ

2h3

( τS(τ3
S +4τ2

S +6τS+6)
8(1+τS )4 + ∫ ∞

0 du u3ξ (u)
)

vz
HI
SD − αSD sin θ

h3

( 3τS(2+τS )(τ2
S +2τS+2)

8(1+τS )4 + ∫ ∞
0 du (1 + u)u2ξ (u)

)
Force quadrupole

vx
HI
Q

αQ cos θ

8h3

(
τS

4(1+τS )5(2+BτS )3

(
Y S

Q cos2 θ − JS
Q

) + ∫ ∞
0 du u3

(
2 − 2u + (5u − 3) cos2 θ

)
ξ (u)

)
vz

HI
Q

αQ sin θ

2h3

( 3τS
4(1+τS )5

(
RS

Q cos2 θ − 2
) + ∫ ∞

0 du (1 + u) u2 (8 − 12u + (15u − 8) cos2 θ )ξ (u)
)

Rotlet dipole

vy
HI
RD

αRD sin(2θ )
4h3

( τSJS
RD

8(1+τS )4(2+BτS )3 − ∫ ∞
0 du u3ξ (u)

)
Stokeslet

vx
HI
S − αS cos θ

2h

( τSJS
S

4(1+τS )3(2+BτS )
+ ∫ ∞

0 du u2ξ (u)
)

vz
HI
S − αS sin θ

h

( τB(τ2
B+3τB+3)

4(1+τB )3 + ∫ ∞
0 du (1 + u)2ξ (u)

)
Rotlet

vy
HI
R

αR cos θ

h2

(− τSJS
R

8(1+τS )3(2+BτS )2 + ∫ ∞
0 du u2ξ (u)

)

APPENDIX B: HIGHER-ORDER SINGULARITIES IN AN
UNBOUNDED FLUID DOMAIN

In this Appendix, we provide for completeness analytical
expressions of the higher-order Stokes singularities in an
unbounded fluid domain, i.e., in the absence of the confining
elastic interface. By making use of the analytical recipes
introduced in Sec. II C, we readily obtain

G∞
R = 1

s2
(ê × ŝ),

G∞
D = 1

s2
[3(ê · ŝ)2 − 1]ŝ,

G∞
SD = 1

s3
[3(ê · ŝ)ŝ − ê],

G∞
Q = 1

s3
{3[5(ê · ŝ)3 − 3(ê · ŝ)]ŝ − [3(ê · ŝ)2 − 1]ê},

G∞
RD = 3

s3
(ê · ŝ)(ê × ŝ),

where, again, s = r − r0 denotes the position vector relative to
the singularity location, s = |s|, ŝ = s/s, and ê stands for the
orientation unit vector of the swimmer as defined by Eq. (13)

of the main body of the paper. Notably, the rotlet and force
dipole decay in the far-field limit as 1/s2, whereas the source
dipole, force quadrupole, and rotlet dipole undergo a faster
decay as 1/s3.

APPENDIX C: EXPRESSION OF THE
INDUCED-SWIMMING VELOCITIES IN THE

FREQUENCY AND TEMPORAL DOMAINS

Here, we present the main mathematical expressions ob-
tained in this paper in the form of tables. We provide
in Tables IV and V explicit analytical expressions of the
frequency-dependent translational swimming velocities and
rotation rates resulting from the fluid-mediated hydrody-
namic interactions with a nearby planar elastic interface. In
Tables VI and VII, we list the corresponding expressions
in the temporal domain for the startup motion from static
conditions. As already mentioned in the main text, only the
induced translational swimming velocities in the temporal do-
main are provided. The rotation rates have rather lengthy and
complex analytical expressions and thus are not listed here.
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TABLE VII. Expressions of the time-dependent coefficients appearing in Table VI.

Coefficient Expression

JS
D 3B2τ 5

S + 12B(1 + B)τ 4
S + 4[1 + 4B(B + 3)]τ 3

S + 4[4 + B(3B + 16)]τ 2
S + 2[8 + B(B + 24)]τS + 8(B + 2)

Y S
Q 21B3τ 7

S + 21B2(6 + 5B)τ 6
S + 42B[5B + 6(B + 3)]τ 5

S + [187B3 + 1260B(B + 1) + 88]τ 4
S + 2(58B3 + 561B2

+ 1260B + 220)τ 3
S + 2(5B3 + 348B2 + 1122B + 440)τ 2

S + 12(5B2 + 116B + 58)τS + 24(5B + 22)

JS
Q 16B3τ 7

S + 16B2(5B + 6)τ 6
S + 32B(5B2 + 15B + 6)τ 5

S + 4[35B3 + 240B(B + 1) + 16]τ 4
S + 8(11B3 + 105B2

+ 240B + 40)τ 3
S + 8(B3 + 66B2 + 210B + 80)τ 2

S + 48(B2 + 22B + 10)τS + 96(B + 4)

RS
Q τ 4

S + 5τ 3
S + 10τ 2

S + 10τS + 9

JS
RD 3B3τ 6

S + 6B2(2B + 3)τ 5
S + 18B(B2 + 4B + 2)τ 4

S + 2(5B3 + 54B2 + 72B − 4)τ 3
S + 4 (B3 + 15B2

+ 54B − 8)τ 2
S + 24(B2 + 5B − 2)τS + 48(B − 1)

JS
S 5Bτ 3

S + (2 + 13B)τS(1 + τS) + 2(1 + 2B)

JS
R B2τ 4

S + B(4 + 3B)τ 3
S + 2B(6 + B)τ 2

S + B(8 + B)τS − 4(1 − B)
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