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ABSTRACT The dynamics of single red blood cells (RBCs) determine microvascular blood flow by adapting their shape to the

flow conditions in the narrow vessels. In this study, we explore the dynamics and shape transitions of RBCs on the cellular scale

under confined and unsteady flow conditions using a combination of microfluidic experiments and numerical simulations. Track-

ing RBCs in a comoving frame in time-dependent flows reveals that the mean transition time from the symmetric croissant to the

off-centered, non-symmetric slipper shape is significantly faster than the opposite shape transition, which exhibits pronounced

cell rotations. Complementary simulations indicate that these dynamics depend on the orientation of the RBC membrane in the

channel during the time-dependent flow. Moreover, we show how the tank-treading movement of slipper-shaped RBCs in com-

bination with the narrow channel leads to oscillations of the cell’s center of mass. The frequency of these oscillations depends

on the cell velocity, the viscosity of the surrounding fluid, and the cytosol viscosity. These results provide a potential framework

to identify and study pathological changes of RBC properties.

INTRODUCTION

Red blood cells (RBCs) are the main constituent of human blood and deliver oxygen to the body tissues via the cardiovascular
system. In the smallest vessels of this extensive network, RBCs flow in single file through microvessels with a diameter
comparable to their size. At rest, healthy RBCs have a biconcave, discocyte shape with a diameter of roughly 8 µm and a
thickness of 2 µm. From a mechanical perspective, RBCs consist of a thin lipid bilayer membrane, with a cytoskeleton network
on its inner surface, containing the inner cytosol (1). Due to their high deformability, RBCs can deform into various shapes
when flowing through microvessels (2–4) and even pass through capillaries smaller than their own size (5, 6). This ability to
dynamically adapt their shape to the flow conditions in the circulatory system determines the unique flow properties of blood
in the microcirculation and is crucial for microvascular RBC transport.

To understand the deformation and dynamics of RBCs in the microcirculation, the flow behavior of single RBCs at the
micrometer scale has been studied both experimentally (7–16) as well as numerically (15, 17–31). In general, RBCs flowing
in small vessels can exhibit a plethora of shapes depending on the channel confinement, the flow velocity, the viscosity of the
surrounding fluid, and the mechanical properties of the RBC itself (32, 33). In microfluidic experiments, RBC suspensions
are commonly studied in round and rectangular capillaries of the same order of diameter as RBCs mainly focusing on the
deformation and the resulting shapes of single RBCs under steady flow conditions. Two of the most frequently observed shapes
are the parachute and the slipper shape. While nearly axisymmetric parachute-shaped RBCs flow in the channel center, non-
axisymmetric slippers flow at an off-centered position closer to the vessel walls. In rectangular channels without the fourfold
symmetry, parachute-shapedRBCs become more asymmetric and are therefore often called croissants. Guckenberger et al. (15)
investigated these two dominant RBC shapes under steady flow conditions in a rectangular microfluidic channel with a width
of 12 µm and a height of 10 µm employing microfluidic experiments in combination with numerical simulations. Covering a
broad velocity range between 0.1 mm s−1 and 10 mm s−1, they constructed a phase diagram for stable RBC shapes at a fixed
position along the channel’s flow direction. The authors observed that croissants predominantlyappear at lower velocities, while
slippers are generally found at higher cell velocities. However, numerical simulations have shown that the occurrence of these
stable RBC shapes under steady-state conditions is affected by the channel geometry, the initial RBC shape and orientation,
and the initial cell position in the channel cross-section at the beginning of the microfluidic channel (15). In addition to the
stable croissant and slipper shapes, various dynamical states including snaking, tumbling, swinging, and tank-treading motions
of RBCs have been reported in numerical (22–24, 27, 30, 31, 34–37) and experimental studies (38–44). One of the most
fascinating dynamics is the characteristic tank-treading motion of slipper-shaped RBCs, where the cell maintains an almost
constant shape, while its membrane circulates around its interior (34, 38). Early rheoscopic experiments in shear flow showed
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that the tank-treading dynamics depend on the applied shear rate and the viscosity of the surrounding fluid (38–40). Recent
numerical simulations in microchannel flow further revealed a strong effect of the confinement and the ratio between the inner
viscosity of the cell and the viscosity of the outer fluid on RBC dynamics (27, 31, 45–47).

Besides these snapshot observations under steady conditions, RBCs can exhibit complex behavior under transient flow
conditions when entering small vessels from a larger reservoir and at bifurcations (14, 16, 32). During the start-up of capillary
flow in microfluidic experiments, RBCs were found to transition from the initial biconcave shape at rest to a final parachute-like
configuration (11). The time scale of this transient shape evolution from a shape at rest to a cell shape in flow was roughly
0.1 s and the final stable RBC shape depended on the cell velocity, the cell orientation in the channel, and the cell size.

Nevertheless, detailed transitions between different RBC shapes in flow could not be experimentally studied so far,
especially under time-dependent flow conditions. From a technical perspective, video microscopy imaging is nowadays
commonly employed at a fixed channel position along the flow direction. However, this limits investigations of RBC dynamics
to a fixed field of view of merely a few hundred micrometers, depending on the used camera and magnification. To overcome
such limitations, we introduce a microscope-based adaptive tracking technique to characterize the dynamics and shape
transitions of RBCs in confined microfluidic channels under arbitrary time-dependent flow conditions. This approach allows
us to image the shape of single RBCs and extract the complete trajectory of the cell along the whole channel length of
several centimeters with cell velocities up to 10 mm s−1, similar to the range of RBC velocities found in the vessels of the
microcirculation (1, 48). Applying time-dependent pressure modulations in combination with our tracking method, we show
that the transition between the croissant to slipper shape is significantly faster than vice versa and that these transitions are
not affected by the applied pressure amplitude. Complementary three-dimensional (3D) numerical simulations indicate the
sensitivity of the system to the exact orientation of the cell during and even before the transition process. Additionally, our
method enables us to experimentally study the dynamics of slipper-shaped RBCs that show tank-treading motion in confined
microscale flows. The observed oscillation amplitudes are in quantitative agreement with corresponding simulations.

MATERIALS AND METHODS

Experimental

Preparation of red blood cell suspensions

Blood is taken with informed consent from healthy voluntary donors by needle-prick and suspended in phosphate-buffered
saline solution (Gibco PBS, Fisher Scientific; Schwerte, Germany). The suspension is centrifuged at 1500 g for five minutes.
Subsequently, sedimented RBCs are resuspended in PBS and the centrifugation and washing steps are repeated three times.
Finally, a hematocrit concentration of 0.5 %Ht is adjusted in a PBS solution that contains 1 g L−1 bovine serum albumin (BSA,
Sigma-Aldrich; Taufkirchen, Germany). Blood withdrawal, sample preparation, and experiments were performed according
to regulations and protocols that were approved by the ethics committee of the ‘Aerztekammer des Saarlandes’ (reference No
24/12).

Further, RBCs are suspended in dextran solutions (Dextran 70 kDa, Sigma-Aldrich; Taufkirchen, Germany) of various
concentrations to study the effect of the viscosity of the surrounding fluid on RBC dynamics. Therefore, dextran solutions
are prepared in the PBS/BSA mixture and the steady shear viscosity of the solutions without RBCs is determined using a
rotational rheometer (MCR 702, Anton Paar; Graz, Austria), equipped with a coaxial cylinder fixture (CC20, inner radius
'i = 10 mm, outer radius 'o = 11 mm). The shear viscosity and density values of the dextran solutions are listed in Table S1
in the Supporting Material.

Microfluidic setup

The RBC suspensions are pumped through microfluidic channels with a high-precision pressure device (OB1-MK3, Elve-
flow; Paris, France) that operates in a pressure range of 0 ≤ ? ≤ 2000 mbar. The microfluidic device is fabricated using
polydimethylsiloxane (PDMS, RTV 615A/B, Momentive Performance Materials; Waterford, New York) through standard
soft lithography (49). The microfluidic chip consists of 30 parallel channels, each with a rectangular cross-section of width
, = 10.8 ± 0.6 µm in H-direction and height � = 7.9 ± 0.3 µm in I-direction. The total length of the channels is ! ≈ 40 mm.
The channels are connected at the beginning and end where they share common fluid inlet and outlet reservoirs. The inlet and
outlet are connected with rigid but flexible medical-grade polyethylene tubing (0.86 mm inner diameter, Scientific Commodi-
ties; Lake Havasu City, Arizona) to the sample and waste container, respectively. The microfluidic device is mounted on an
inverted microscope (Eclipse TE2000-S, Nikon; Melville, New York), equipped with a computer-controlled, motorized stage
(Scanning Stage SCAN IM 120 x 100, Märzhäuser Wetzlar; Wetzlar, Germany), a USB 3.0 camera (DMK 23U1300, The
Imaging Source; Bremen, Germany), and a LED illumination (Fig. 1(a)). For the cell tracking experiments, a 20× air objective
(Plan Fluor, Nikon; Melville, USA) with a numerical aperture #� = 0.45 is used.
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Figure 1: (a) Schematic of the experimental setup. (b) Tracking of a RBC during an increasing pressure drop ramp from
100 mbar to 1000 mbar. While the cell travels through the channel, as shown in the snapshot, the stage speed is adjusted in a
feedback loop to keep the cell in the field of view. The velocity of the cell (green line) is calculated for each frame based on
the stage velocity (black circles) and the position of the cell in the field of view (magenta coordinates).

To determine the fraction of RBC shapes in the channel under steady flow conditions, shapes are classified at a constant
pressure drop covering a broad pressure range of 20 ≤ ? ≤ 1000 mbar. Therefore, RBCs are recorded with a frame rate of
400 fps at a fixed position at the middle of the microfluidic chip at G = !/2 using a high-magnification 60× oil immersion
objective with a high #� = 1.55 (CFI Plan Fluor, Nikon; Melville, New York). RBC shapes are classified manually according
to Guckenberger et al.(15) and the individual cell velocity is determined by tracking the cell position over the image sequence
within the field of view.

RBC tracking technique

In this study, we present a microfluidic technique that allows us to track objects, e.g., RBCs, in a comoving frame over several
centimeters along the channel flow direction. To obtain the comoving frame, we use a customized feedback-control mechanism
between the computer-controlled, motorized stage and the image stream from the camera, implemented in a self-written
MATLAB program (The MathWorks; Natick, Massachusetts). Initially, the ROI of the camera, which operates at a frame
rate of 100 fps, is positioned stationary close to the channel entrance without any passing cells. The positions of the channel
borders are detected and the image background is calculated by computing a pixel-wise average over multiple frames. When a
cell enters the region of interest (ROI), the number of pixels above the background level exceeds an adjustable threshold value
that is related to the cell projection area and the tracking routine loop starts. During the tracking loop, the position of the cell is
determined in every frame and a consistency check is performed based on the position of the cell in the previous frame. Every
second frame, the stage velocity is adjusted using a non-linear integral controller to keep the cell at a given position in the field
of view. This procedure is repeated until the cell exits the channel. To keep the traffic of the serial communication interface
low while using a frame rate of 100 fps, the stage position and velocity are saved every twelfth frame during the feedback
loop. As schematically shown in Fig. 1(b) for a pressure ramping from 100 mbar to 1000 mbar (blue line), the RBC velocity
(green line) is calculated for each frame based on the stage velocity (black circles) and the position of the RBC in each frame.
The maximum cell velocity that can be tracked is approximately 10 mm s−1, limited by the speed of the motorized stage. All
tracking experiments are performed at room temperature.

Simulations

We perform numerical simulations of single RBCs in a rectangular channel that closely matches the experimental settings.
The channel has a width of , = 11.5 µm and a height of � = 8 µm with slightly rounded corners. The length of the channel is
! = 42.7 µm, and periodic boundary conditions are applied in the flow direction.

The Reynolds number Re, which relates the inertial to viscous forces in the system, is defined as Re = E�hd/[o, with the
fluid density d = 1 g cm−3, the cell velocity E, the fluid’s dynamic viscosity [o = 1.2 mPa s, and the hydraulic diameter of the
rectangular microfluidic channel �h = 2,�/(, + �). For characteristic velocities E < 10 mm s−1, the maximum Reynolds
number is Re < 0.1, hence the Stokes equation adequately describes the flow. Thus, we use the boundary integral method to
compute the trajectory and deformation of the cell moving through the channel (15, 50–52).

The RBC has a long radius of ' = 3.91 µm when in the characteristic discocyte shape, a surface area of � = 133.5 µm2,
and a volume of + = 93.5 µm3 (53–55). Its surface is discretized by 2048 flat triangles. The infinitely thin elastic membrane
of the RBC is endowed with resistance to shear and area dilation and is modeled using Skalak’s law (56, 57) with the shear
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modulus ^S = 5 × 10−6 N m−1 (58–60) and the area dilation modulus ^A = 100^S. The typical discocyte shape is used as an
elastic reference shape for the shear contribution unless stated otherwise. An alternative choice for the elastic reference shape
is an oblate spheroid (46, 47, 61–63) with the same surface area as the RBC. Some simulations are additionally performed
with oblate spheroids of aspect ratio g = 0.9 or g = 0.98 as an elastic reference shape. The RBC membrane shows resistance
to bending implemented using the Helfrich law (64–67) with a bending modulus of ^B = 3 × 10−19 N m (60, 68) and a flat
bending reference shape.

The Newtonian fluid flowing through the channel has a dynamic viscosity [o. The RBC is filled with another Newtonian
fluid with a viscosity [i, resulting in a viscosity contrast _ = [i/[o. Early experimental investigations suggested that the
physiological viscosity contrast is roughly _ = 5 (69, 70). Hence, numerical simulations of RBCs are often performed with
_ = 5 (15, 30). However, we found that simulation results for _ = 10 are closer to the experimental observations. Therefore,
simulations are performed at _ = 10 in this study unless stated otherwise. Choosing a higher viscosity contrast might also
provide a potential way to account for the viscosity of the membrane (71, 72), which is not explicitly included in our numerical
model.

In the simulations, we do not apply a pressure gradient but control the RBC velocity by setting a mean flow velocity. To
mimic the experimental pressure ramps, the cell accelerates linearly over time from a lower Elow to a higher Ehigh mean velocity.
Simulations are performed up to cell velocities of 8 mm s−1, since they become unstable beyond that point due to the high
shear rates in the narrow channel. The velocity ramp simulations all start with a RBC in the discocyte shape centered in the
channel with its symmetry axis aligned with the channel axis. Before the start of the ramp, the cells flowed for a short time of
0.2 s at the lower velocity Elow. This reflects the fact that experimental measurements started close to the channel entrance.

RESULTS AND DISCUSSION

Stable red blood cell shapes under steady flow conditions

Depending on their velocity and the channel confinement RBCs exhibit various shapes when flowing through microchannels.
Here, cells are classified under steady flow conditions either as one of the two most dominant RBC shapes, i.e., croissants and
slippers, or as others that are not categorized further (15). To derive the shape phase diagram, measurements are taken at a
fixed position at G = !/2, and cells are classified based on their shape in this fixed field of view. We found with our adaptive
control setup that individual RBCs keep their stable shapes while traveling through at channel under steady flow conditions.
The fractions of cells in each of the three main classes at a constant pressure drop in the microfluidic experiments are plotted
in Fig. 2(a). The corresponding mean cell velocities are shown at the top G-axis, covering a range of 0.1 ≤ E ≤ 9.7 mm s−1,
similar to RBC velocities found in the microcirculation (1, 48). The centered croissants appear predominantly at lower pressure
drops with a pronounced peak of roughly 70% at ? = 100 mbar or E ≈ 1 mm s−1. For pressure drops above ? ≥ 300 mbar
(E ≈ 3 mm s−1), the fraction of croissants significantly decreases while off-centered slipper-shaped RBCs emerge. Above
? ≥ 500 mbar (E ≈ 5 mm s−1), croissants disappear almost completely and the fraction of slippers plateaus at roughly 70%. In
the numerical simulations, croissant and slipper shapes appear at velocities similar to those of the experiments, as shown in
Fig. S1 in the Supporting Material. Representative images of a croissant and a slipper-shaped RBC are shown in Fig. 2(b). The
phase diagrams in Fig. 2 and Fig. S1 are in good agreement with studies in similar microchannels (15) and serve as a reference
point to define the pressure and velocity limits of the time-dependent flow modulations.

Red blood cell shape transitions in time-dependent flows

To study the dynamical transitions between the stable croissant and slipper shape experimentally, we apply pressure drop
ramps between a low ?low and a high ?high pressure limit within a ramping time Cramp. The pressure limits are chosen such that
at ?low = 100 mbar RBCs mainly exhibit the croissant shape, while in the range of 600 ≤ ?high ≤ 900 mbar slippers appear
predominantly. The total pressure drop change during the ramp is consequently defined as Δ? = ?high − ?low. These ramping
experiments are conducted in upward and downward ramp direction with ramping times Cramp covering a range between 0.125 s
and 1 s.

Representative results for ramps with Cramp = 0.5 s are shown in Fig. 3(a) and (b) for an experiment and a corresponding
simulation, respectively. In Fig. 3(a), the applied pressure limits are ?low = 100 mbar and ?high = 600 mbar, resulting in similar
RBC velocities as the mean velocities of Elow ≈ 1 mm s−1 and Ehigh ≈ 5.8 mm s−1 in the numerical simulation in Fig. 3(b). The
origin of the time C = 0 is set to the beginning of the ramps. As the applied pressure changes over time in the experiment, the
RBC velocity changes without any time delay due to the negligible inertia in the system Re ≈ 0.05.

To characterize the RBC shape transition, the H-coordinate of the cell’s center of mass is plotted as a function of time in
the bottom row of Fig. 3. Corresponding videos of the cells’ movement in the comoving frame are provided in Movie S1 and
Movie S2 in the Supporting Material for the upward experiment and simulation, respectively. During the upward ramp, the
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Figure 2: Classification of RBC shapes in microfluidic channels under constant flow conditions. (a) Fraction of RBC shapes
as a function of the applied pressure drop (bottom axis) and the mean cell velocity (top axis). (b) Representative examples of
a croissant (top) and a slipper (bottom) for experiments with ? = 100 mbar and ? = 600 mbar, corresponding to cell velocities
of E ≈ 1 mm s−1 and E ≈ 5.8 mm s−1, respectively. The simulation snapshots are obtained at similar velocities. The flow is in
G-direction and the scale bars represent a length of 5 µm.

RBC initially flows as a croissant at the channel centerline at H = 0. As the velocity increases during the upward ramp, the
cell stays in the channel middle. Eventually, the RBC directly transitions from the croissant into the off-centered slipper shape,
resulting in a change of the H-coordinate of the cell’s center of mass, similar to the upward numerical simulation in Fig. 3(b).
The beginning and end of the shape transition are highlighted with magenta markers in the bottom row of Fig. 3. They are
determined based on the pictures of the cell shape, analogously to the manual shape classification used for the construction of
the phase diagram in Fig. 2. Although the pressure or velocity ramp starts at C = 0, the beginning of the transition process is
delayed for the upward ramp and begins at C ≈ 0.4 s and C ≈ 0.23 s for the experiment and simulation, respectively. The shape
transition is accompanied by a shift of the cell’s center of mass from the channel center to a position closer to one of the
channel’s side faces in H-direction. Note that this transition occurs randomly to one of the channel side walls in positive or
negative H-direction. This movement to a streamline closer to the wall results in a slight decrease of the RBC velocity after
reaching the end of the pressure ramp at C = 0.5 s, which is also seen in the simulation. Once the RBC fully transitioned into
the slipper shape and reaches the off-centered steady-state position, we observe pronounced oscillations of the cell’s center of
mass over time in both the experiment and the simulation. These dynamics lead to a continuous cross-streamwise oscillation
of the slipper-shaped RBC while flowing through the channel, which results in an oscillating velocity.

Similar to the upward ramp experiment, the right panels in Fig. 3(a) and (b) show the downward ramp experiment and
simulation, respectively. Movie S3 and Movie S4 in the Supporting Material show corresponding videos of the cells’ movement
in the comoving frame for the downward experiment and simulation, respectively. In the simulations, the downward ramp
starts after a plateau at Ehigh, which lasts for C ≈ 1.5 s. In the downward scenario, the cell initially is in the off-centered slipper
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Figure 3: Dynamics of single RBCs in time-dependent flows at Cramp = 0.5 s for (a) an experiment and (b) a simulation. The
left and right columns in (a) and (b) correspond to upward and downward ramps, respectively. In (a), the top panels show
the applied pressure drop signal over time, ramping from ?low = 100 mbar to ?high = 600 mbar for the upward ramp, and vice
versa for the downward situation. The middle panels in (a) show the cell velocity as green line. The gray dashed-dotted lines
correspond to analytical solutions of the maximum and mean velocity inside the channel. The corresponding simulations in (b)
show the cells transitioning from a velocity Elow ≈ 1 mm s−1 to Ehigh ≈ 5.8 mm s−1. Vertical dotted lines indicate the start and
end of the ramps. The bottom panels in (a) and (b) show the H-coordinate of the cell’s center of mass. The inset images show
the cells at the start and end points of the shape transitions, highlighted by the magenta markers. The horizontal, dashed black
lines correspond to the channel center axis. The scale bars represent a length of 5 µm. Corresponding videos are provided in the
Supporting Material for the upward experiment and simulation (Movie S1 and Movie S2) and for the downward experiment
and simulation (Movie S3 and Movie S4).

shape. During the decrease of the applied pressure or velocity, the shape transitions start with a time delay at C ≈ 0.18 s in the
experiment and C ≈ 0.3 s in the simulation with respect to the start of the downward ramp at C = 0. However, in contrast to
the direct shape transition during the upward ramp, the cell shown for the downward case in Fig. 3(a) does not immediately
transition from one shape into the other, but exhibits a pronounced cell rotation, which is accompanied by a deformation
of the membrane and a tumbling motion of the cell. For this downward experiment, the RBC first approaches the channel
middle, then rotates and tumbles once, as indicated by the increase in the H-coordinate at C ≈ 1.3 s, before finally achieving
its steady-state position in the channel center. Multiple similar cell rotations during the shape transition also occur during the
downward simulation in Fig. 3(b). To differentiate such shape transitions from the typically direct shape transitions during the
upward ramps, we refer to RBC shape changes that exhibit pronounced rotations as rotating shape transitions. While 29% of
all investigated RBCs show pronounced rotating transitions during the downward ramping experiments, such transitions are
found in merely 5% of all upward ramping experiments. Additional examples for direct and rotating transitions for experiments
and simulations are provided in Fig. S2 in the Supporting Material.

As shown in Fig. 3, the shape transitions begin after a certain time delay during the upward and downward ramps. In an
effort to evaluate the critical conditions for these shape changes to start, we calculate the transition velocity Et at which the
shape transitions begin. For this, the cell velocity at the start of the transition from the croissant to the slipper case is determined
during the upward ramps and for the vice-versa transition during the downward ramps. Figure S3 in the Supporting Material
shows Et for various ramping times for (a) the upward and (b) the downward ramp. We include all pressure amplitudes Δ? in

6



Figure 4: Effect of the ramping parameters on the shape transition. Experimental data are shown as boxplots with superimposed
individual gray data points. Outliers are plotted using ’+’-symbols. Simulation results are plotted as red symbols. Cells that
show pronounced rotations during the shape transitions are highlighted as stars. (a) Transition time ΔC for an upward ramp as a
function of the total pressure difference at a constant ramp duration of Cramp = 0.5 s. ForΔ? = 500 mbar andΔ? = 650 mbar, the
velocities in the simulations are ΔE ≈ 4.7 mm s−1 and ΔE ≈ 6.2 mm s−1, respectively. (b) Transition time for different ramping
duration for an upward ramp with Δ? = 500 mbar, corresponding to ΔE ≈ 4.7 mm s−1 in the numerical simulation. In (c), all
individual measurements for the upward and downward ramp directions are combined. The inset shows the experimentally
observed transition times normalized by the mean transition time ΔC. (d) Transition length ΔG as a function of the ramping
direction, combining all individual measurements, similar to (c). The individual measurements of ΔC and ΔG are shown Fig. S5
and Fig. S6 in the Supporting Material, respectively.

Fig. S3, since we do not observe a correlation between the pressure amplitude and the transition velocity. For the experiments,
the transition velocity scatters broadly for both the upward and downward direction, as shown by the black boxplots with
superimposed gray data points. Nevertheless, a slightly decreasing mean transition velocity with increasing ramping time Cramp

can be observed for both ramping directions. The numerical simulations reveal similar transition velocities for the upward and
downward ramp direction and a similar dependency on Cramp. In the case of the downward ramp, the mean experimental values
are in good agreement with the numerical predictions, while for the upward ramp direction, experimentally determined Et are
overall higher than the numerical predictions. However, this deviation is attributed to a pressure-induced deformation of the
PDMS-based microfluidic chip during the upward pressure ramp, where the widening of the channels increases with increasing
applied pressure (73). This increase of the channel cross-section leads to a higher RBC velocity at a fixed pressure drop, which
is also visible in the upward experiment in Fig. 3(a), where the cell velocity (green line) shows a steeper increase than the
analytical prediction (gray dashed-dotted lines). This effect also results in velocity overshoots during upward experiments with
very short ramping duration, as shown in Fig. S4 in the Supporting Material. Hence, the beginning of the shape transitions in
the upward experiments are often close to this velocity overshoot, which yields higher transition velocities for the experimental
upward case in Fig. S3 with respect to the numerical simulations. In contrast to the upward ramps, the pressure-induced change
of the channel cross-section during the downward ramp is less pronounced and therefore we find a better agreement between
the experimental and numerical results for the downward case in Fig. S3. Note that the mean values of the transition velocity
2 < Et < 7 mm s−1 lie in the bistability region of the phase diagram, where both croissants and slippers appear (15).

To further study the influence of the ramping parameters, i.e., the total pressure amplitudeΔ? during the ramp, the ramping
duration Cramp, and the ramping direction, on the shape transition, we determine the transition time ΔC that is needed for the
shape transitions process. Hence, ΔC is the time duration, which RBCs need to switch from the croissant to the slipper shape
in upward ramping experiments and vice-versa in downward measurements, as exemplified in Fig. 3. This transition time is
determined based on the cell images from the experiments and simulations, where the beginning corresponds to the point
in time when the transition starts at Et. Figure 4 shows the experimental and simulation results and stars indicate RBCs that
show pronounced rotations during the shape transition. As shown in Fig. 4(a) for a representative upward ramp at Cramp = 0.5 s,
the transition time ΔC does not depend on the total pressure amplitude Δ? during the ramp. Surprisingly, we do not find
a pronounced effect of the ramping duration Cramp on ΔC, as exemplified in Fig. 4(b) for a constant pressure amplitude of
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Δ? = 500 mbar, corresponding to ΔE ≈ 4.7 mm s−1 in the numerical simulation. Although, the mean values of ΔC in Fig. 4(b)
show a slight increase with Cramp, this tendency is not found for other pressure differences, as shown in Fig. S5 in the Supporting
Material. Similar to the observations for an upward ramp, the transition time in downward ramping experiments also does
neither depend on Cramp norΔ? or ΔE. The individual measurements for all combinations of Cramp andΔ? or ΔE are summarized
in Fig. S5 in the Supporting Material.

However, we observe a striking difference in the transition time depending on the ramping direction, as shown in Fig. 4(c).
Here, the mean transition time from the croissant to the slipper shape in upward ramp experiments is ΔCup = 0.36 s. In contrast,

we observe a much longer transition time of ΔCdown = 1.6 s for the opposite shape transition in downward ramp experiments,
including a broad scattering of ΔC. For the simulations, we find mean transition times of ΔCup = 0.37 s and ΔCdown = 2.15 s

for the upward and downward scenarios, respectively. Normalizing the experimental data by the mean transition times ΔC, as
depicted in the inset of Fig. 4(c), shows that the relative deviations in both ramp directions are very similar. Additionally, cells
that rotate and tumble during the shape transitions often exhibit comparatively longer transition times in both ramp directions,
indicated by the star symbols in Fig. 4(c).

The difference in the transition time between the two scenarios arises mainly due to two effects. First, the shape transition
during the upward ramp starts when the cell reaches the transition velocity Et. This happens either during the ramp or after
reaching the plateau at ?high, as shown in Fig. 3 and Fig. S4. Hence, the average velocity during the consecutively occurring
transition process is close to the plateau velocity at Ehigh. For the upward ramp scenario, this high cell velocity enhances the
cross-stream movement of the cell in H-direction resulting in the formation and stabilization of the slipper-shaped RBC. In
contrast, during the opposite ramp, the transition also starts during the ramp, but most of the process occurs at the lower plateau
?low, as shown in Fig. 3 and Fig. S4. Note that the amount of time during ΔC that the cell flows at ?low or Elow is much larger
than the time during the ramp after having reached Et. Thus, the average velocity during the downward transition is close to
Elow, which leads to a slower transition process from the slipper to the croissant shape and thus a slower movement towards the
channel centerline. Guckenberger et al. (15) showed in their simulations that cells at lower velocities and cells which become
croissants need more time until they reach the steady-state compared to cells at larger velocities and transitioning into the
slipper shape. The second effect is that 29% of the RBCs rotate during the downward transition before reaching the stable
croissant shape. This rotation at lower cell velocities increases the transition time for the downward ramping experiments. In
contrast, only 5% of the cells show such rotating shape transitions during the upward ramp, where the shape transition is
already accelerated due to the higher cell velocity.

Further, our tracking approach allows us to determine the transition lengthΔG that the RBC travels through the microchannel

during the shape transition process. The transition length is calculated by ΔG =

∫
ΔC

0
E(C) 3C. Here, C = 0 represents the start of

the transition process with E(C = 0) = Et. Figure 4(d) shows ΔG for both ramp directions, including all combinations of Cramp

and Δ? or ΔE. The individual measurements are summarized in Fig. S6 in the Supporting Material. In case of the upward
ramping experiments, we find a slightly higher mean transition length of ΔGup = 2.8 mm compared to the downward scenario

ΔGdown = 1.8 mm. However, the upward data also shows a broader scattering, which is again attributed to the channel widening
and the velocity overshoot during the upward ramp, similar to the results discussed in Fig. 3 and Fig. S4. For the simulations, we
observe mean transition lengths of ΔGup = 2.1 mm and ΔGdown = 2.5 mm for the upward and downward scenarios, respectively.
Assuming an average transition length of 2 − 3 mm and a characteristic cell diameter of � ≈ 8 µm, the shape transitions occur
over approximately 250 to 375 times the RBC diameter while traveling through the microvessel.

Moreover, our numerical simulations suggest that the transition dynamics during the downward ramps highly depend on
the orientation of the RBC in the channel cross-section at the start of the ramp. At rest, the RBC has the shape of a biconcave
disk, with a rim and two dimples, schematically shown in the left simulation snapshot of Fig. 5(a). The positions of the
two dimples are highlighted by green and blue markers. Being subject to external forces, the RBC deforms and the dimple
positions move along the RBC surface. However, after removal of the external forces, the RBC deforms back into its original
shape and the rim and dimples are formed by the same part of the membrane as before the deformation, indicating a so-called
shape memory of the RBC (41, 74). In our simulations, after the cell transitions into the slipper shape, the cell membrane
tank-treads in a characteristic movement, where the two dimples follow this tank-treading in the G-H-plane, similar to previous
simulations (15). Two snapshots of such slipper cells are shown in the black and red boxes in Fig. 5(a) for different points in
time during the tank-treading. In the rightmost image of Fig. 5(a), the green and blue dimples traveled a bit further than in the
middle image, by rotating with the membrane in the G-H-plane. We start the downward ramps in two different simulations once
when the cell is in the position shown in the middle image in Fig. 5(a) and once when it is in the position shown in the right
image. All other simulation parameters being equal, these configurations lead to two distinct downward transition trajectories.
The H-coordinates of the RBCs’ centers of mass during the downward transitions are compared in Fig. 5(b), indicating how
sensitive the system is to changes in the slipper shape at the start of the velocity ramps with respect to the membrane dimples.
Although a clear correlation between the dimple positions at the start of the downward ramp and the rotating behavior or
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Figure 5: Simulated dependency of the downward transition process on the RBC’s dimple position for a downward ramp from
Ehigh ≈ 7.2 mm s−1 to Elow ≈ 1 mm s−1 within Cramp = 1 s. (a) Simulation snapshots of the RBC at rest (left) and at the two
starting positions (middle and right) of the downward ramp at C = 0. (b) H-coordinate of the cell’s center of mass, corresponding
to the two scenarios marked by the black and red boxes in (a).

transition time could not be found, the sensitivity of the system to the exact orientation of the cell during the transition process
explains the broad scattering of ΔC in Fig. 4(c).

Dynamics of slipper-shaped red blood cells

As shown in Fig. 3, slipper-shaped RBCs exhibit time-dependent dynamics that lead to pronounced cell oscillations in confined
channel flows. Here, we use the presented tracking technique to study these dynamics as the cells travel through the microfluidic
channel. Moreover, we perform numerical simulations with different viscosity contrasts _ = [i/[o between the viscosity of
the RBC’s inner cytosol and the viscosity of the surrounding fluid. Recent simulations showed that the viscosity contrast
crucially affects the flow of single vesicles and RBCs in linear shear and Poiseuille flow (36, 45–47, 75–78). Additionally, the
viscosity of the surrounding fluid can have an impact on the RBC shape and thus the flow properties of RBC suspensions
(32, 44). Therefore, we choose a broad range of _ = 5, 10, and 20 to study the effect of the viscosity ratio on the dynamics of
slipper-shaped RBCs.

A representative cell trajectory is shown in Fig. 6(a) for a simulation with _ = 10 (top) and an experiment (bottom).
During this upward ramp, the RBC transitions from the croissant to the slipper shape and moves from the channel centerline
to an off-centered position. Once the RBC achieves the slipper shape at C ≈ 1 s, the cell’s center of mass shows distinct
oscillations around an off-centered equilibrium position of H ≈ 1.8 µm in the simulations and H ≈ 1.7 µm for the experiments.
This equilibrium position does not depend on the adopted cell velocity and is not influenced by the viscosity ratio in the
numerical simulations, as shown in Fig. S7 in the Supporting Material.

A closer look at the slipper oscillations over one oscillation period is shown in Fig. 6(b) for the time windows highlighted
by the rectangular boxes in (a). Additionally, snapshots of the simulation and experimental RBCs are shown in Fig. 6(c)
corresponding to the time frame marked in (b). While these oscillations are found in all ramp simulations for the discocyte
reference shape, approximately 50 % of the experimentally observed slipper-shaped RBCs exhibit such pronouncedoscillations.
These oscillations are fitted with a sinusoidal function to extract the frequency, amplitude, and steady-state H-position of the
cell’s movement. The results are shown as red and black symbols in the lower row of Fig. 6 for simulations and experiments,
respectively.

Figure 6(d) shows the oscillation frequency as a function of the applied pressure drop or cell velocity. For both simulation
and experiment, the oscillation frequency increases linearly with increasing cell velocity. Further, increasing the viscosity
ratio in the simulations results in a decrease of the oscillation frequency, which is connected to the tank-treading frequency
of the membrane. Similarly, earlier investigations in shear flow have shown that the tank-treading frequency of RBCs is
influenced by the viscosity contrast (21, 40, 42, 79). In our study, simulations with _ = 20 fit the experimental observations
best, whereas simulations with a lower viscosity contrast deviate from the experiments by a factor of approximately 2.8 and
1.9 for _ = 5 and _ = 10, respectively. While the frequency increases linearly with the cell velocity, the amplitude of the slipper
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Figure 6: Dynamics of slipper-shaped RBCs. Panel (a) shows the H-position of the cell’s center of mass for a simulation (top)
during a velocity ramp between Elow = 1 mm s−1 and Ehigh = 5.8 mm s−1, and for an experiment (bottom) during an upward
pressure ramp from ?low = 100 mbar to ?high = 600 mbar within Cramp = 0.5 s. (b) Oscillations of the slipper-shaped cells over
one oscillation period ) , corresponding to the time windows marked by the rectangular boxes in (a). Red and black lines
represent sinusoidal fits to the simulation and experimental results, respectively. (c) Representative image sequences of the
slipper-shaped cells for the simulation (top) and experiment (bottom), corresponding to the points in time marked by large
symbols in (b). Dashed black lines indicate the channel centerline, while the black dots represent the cell’s center of mass.
The scale bars represent a length of 5 µm. The frequency and amplitude of the fits as a function of the applied pressure drop
or cell velocity are shown in (d) and (e), respectively. Numerical results are plotted for different viscosity ratios _ as red
symbols and experiments are shown as black boxplots with gray dots. Outliers are plotted using ’+’-symbols. Panel (f) shows
the oscillation frequency as a function of the cell velocity and for different outer viscosities [o. Black full symbols correspond
to the experimental results, while red open symbols show the simulation results. Simulations are performed with a constant
inner viscosity of [i = 12 mPa s.

oscillations is not systematically affected by the applied pressure drop or velocity, as shown in Fig. 6(e). For the experiments,
the average amplitude is roughly 0.12 µm. For the simulations with _ = 5 and _ = 10, we find a similar mean amplitude of
0.12 µm and 0.14 µm, respectively, in good agreement with the experimental observations. However, _ = 20 yields a higher
average amplitude of 0.26 µm. Note that in the numerical simulations with _ = 20, slipper-shaped RBCs exhibit different
behavior in two consecutive regimes. First, the cells show the regular tank-treading slipper movement with dimples following
the membrane rotation in the G-H-plane. However, after a few oscillation cycles, the cell rotates such that the dimples are
located at the side of the tank-treading slipper. This reorientation of the membrane influences the oscillation frequency and
amplitude of the cell’s center of mass and is also found for _ = 10. However, for _ = 10 the first regime is stable for a longer
time, as shown in Fig. S8 in the Supporting Material. In our simulations, a lower viscosity contrast and larger cell velocities
seem to stabilize the initial regular slipper oscillations. The results in Fig. 6 show the data obtained from fitting the oscillations
in this first stable regime. After the reorientation, the slipper oscillations in H-direction vanish almost completely. This effect
might also be reflected in the experiments. We hypothesize that the fact that pronounced oscillations are found in only 50% of
all observed slippers is linked to a distribution of the cytosol viscosity within the RBC population. Hence, we do not observe
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Figure 7: The motion of a wrinkle on the RBC surface, marked with cyan circles in the experiment (a) and a simulation (c),
at E ≈ 7 mm s−1. The time between each consecutive image in (a) and (c) is 10 ms and 7.6 ms, respectively. The black dotted
line indicates the channel’s centerline and dark gray dots represent the cell’s center of mass. The white scale bars correspond
to a length of 5 µm. The wrinkles in the membrane of the slipper-shaped cell periodically move along the RBC surface. The
frequency of this movement is plotted in (b) and (d) as cyan symbols for the experiments and simulations, respectively, together
with the frequency of oscillation of the cell’s center of mass. For the simulation in (c), the positions of the two RBC membrane
dimples are highlighted with blue and green markers. The oscillation frequency of the green dimple is plotted in (d).

slipper oscillations in the channel’s H-direction for cells with a larger _, while cells with a small viscosity contrast show distinct
oscillations.

Moreover, we explore the effect of different RBC elastic reference shapes for the shear contribution on the dynamics of
slipper-shaped cells in the numerical simulations. Here, simulations are performedwith the typical discocyte as reference shape
as well as two oblate spheroids with aspect ratio g = 0.9 or g = 0.98. As shown in Fig. S9 in the Supporting Material, we find
a similar oscillation frequency for the oblate reference shape with g = 0.9 as for the discocyte reference shape. For g = 0.98,
the slipper oscillations show a higher frequency. Further, both oblate spheroids lead to much smaller oscillation amplitudes
than the discocyte, in disagreement with the experimental observations. Also, variations of the flat bending reference shape,
the shear modulus ^S, and the bending modulus ^B within the range of physiological values for RBCs have negligible impact
on the simulation results, as shown in Fig. S10 in the Supporting Material.

While the viscosity contrast can be arbitrarily adjusted in the numerical simulation, the viscosity of the RBC’s cytosol in the
experiments cannot be determinedprecisely. To study the effect of the viscosity contrast on the slipper dynamics experimentally,
we perform RBC tracking experiments in different dextran solutions as the surrounding fluid, resulting in outer viscosities in
the range between 1.2 ≤ [o ≤ 2.7 mPa s, as shown in Fig. 6(f). The G-axis of Fig. 6(f) corresponds to the measured cell velocity.
Complementary simulations are performed at the same outer viscosity values and a constant inner viscosity of [i = 12 mPa s.
Both experiments and simulations show an increase of the oscillation frequency with increasing outer viscosity as well as a
linear dependency on the RBC velocity. Further, the simulations deviate from the experimental observations by a constant
factor of roughly 1.9, independent of the viscosity of the surrounding fluid. These deviations might arise due to the lack of the
membrane viscosity as an additional parameter in the present numerical simulations besides [i and [o. Recent simulations of
capsules and RBCs suggest that the incorporation of the membrane dissipation through a shear-thinning membrane viscosity
affects the tank-treading dynamics of RBCs and yields good agreement with experimental observations in simple shear flow
(80, 81). Our simulations also show that although increasing the viscosity contrast has similar effects as including or increasing
the viscosity of the membrane, these two parameters are not qualitatively identical (82, 83). Moreover, we experimentally
observe that for an outer viscosity of [o = 1.2 mPa s, slipper-shaped RBCs predominantly appear above a cell velocity of
roughly E = 5 mm s−1. However, increasing the outer viscosity to [o = 2.7 mPa s, we also find oscillating slipper-shaped RBCs
at lower cell velocities of E ≈ 2 mm s−1, as shown in Fig. 6(f). This suggests that the external shear stress on the cell influences
the RBC shape (32), which indicates a dependence of the RBC shape phase diagram not only on the intrinsic mechanical RBC
properties but also on the surrounding fluid.

The origin of the observed oscillations of slipper-shaped cells in Fig. 6 is a tank-treading movement of the RBCs that
has been investigated in rheoscopic experiments before (38–40). In the microfluidic channel, this rotating movement of the
RBC membrane in combination with the confinement of the cell and the strong shear gradient in the narrow channel leads
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to the distinct oscillations of the cell’s center of mass in the H-direction. In some experiments where cells show pronounced
oscillations, we observe the formation of a wrinkle in the RBC membrane that travels over the RBC surface (Movie S5
in the Supporting Material). Cyan circles in Fig. 7(a) highlight the position of such a wrinkle as it travels along the RBC
surface during a recorded image sequence. The frequency of this movement is similar to the oscillation frequency of the cell’s
center-of-mass, as shown in Fig. 7(b). In the numerical simulation, similar wrinkles are also observed during certain stages
of the oscillation, as shown at the cell’s tail in the first and last images of Fig. 7(c) for _ = 10 (Movie S6 in the Supporting
Material). The frequency with which this wrinkle appears at the tail of the slipper is plotted in Fig. 7(d) and coincides with
the oscillation frequency of the cell’s center of mass, similar to the experimental observations.

Furthermore, we can mark specific spots, e.g., the dimples in the initial discocyte RBC shape, on the RBC membrane in
the numerical simulations and track their positions over time. The movement of these marked spots ultimately corresponds to
the tank-treading movement of the cell. The tank-treading frequency of one dimple, marked by the green marker in Fig. 7(c),
is exactly half the frequency of the center of mass movement as well as the frequency of the wrinkle, as shown in Fig. 7(d). In
the first image of the sequence in Fig. 7(c), the wrinkle emerges at a position before the green dimple, while in the last image,
another wrinkle forms before the blue dimple. Hence, two wrinkles are formed at an interval of half the cell’s circumference
in the G-H-plane that travel over the RBC membrane at twice the tank-treading frequency. In the simulations, we observe that
wrinkles are more pronounced for higher viscosity ratios. Experimentally, roughly 5% of all slipper-shaped RBCs that show
pronounced oscillations exhibit such wrinkles, independent of the applied pressure drop. We hypothesize that the appearance
of moving wrinkles in the RBC membrane is related to the distribution of cell age and therefore the mechanical RBC properties.
Detailed investigations of these peculiar dynamics of RBCs in confined microchannel flow will therefore be performed for
age-separated cell fractions in future studies.

CONCLUSION

The flow behavior and distinct shapes of RBCs play a pivotal role in the microvascular blood flow. In microfluidic studies with
channel dimensions similar to the RBC diameter, the symmetric croissant in the channel center and the non-symmetric slipper
closer to the vessel walls are the dominant RBC shapes, depending on the cell velocity as determined by the applied pressure
drop. In this study, we analyzed the dynamics of single RBCs in confined, time-dependent flows using a direct comparison
of microfluidic experiments and numerical simulations. Therefore, we introduce a customized, feedback-controlled tracking
technique that enables us to investigate the shape evolution of cells while traveling through the microchannel. Employing
increasing and decreasing pressure ramps, we find that the transition from the centered croissant shape to the off-centered
slipper shape is with a mean transition time of ΔCup = 0.36 s much faster than the opposite shape transition with ΔCdown = 1.6 s.
During the latter shape transition, we observe rich rotation and tumbling events that prolong the shape change. Complementary
numerical simulations reveal that such events highly depend on the position of the cell’s characteristic dimples of the biconcave
RBC shape at the start of the transition process.

Moreover, the presented tracking method allows us to experimentally probe the temporal dynamics of slipper-shaped
RBCs along the flow direction. Here, we report a unique RBC movement that is characterized by distinct lateral oscillations
of slipper-shaped RBCs towards the channel sidewalls in H-direction. Our numerical simulations reveal that the origin of these
characteristics is a tank-treadingof the RBC membrane in combination with the strong confinement in the narrow microchannel.
The frequency of these oscillations increases with the cell velocity and with the viscosity of the surrounding fluid. In contrast,
the oscillation amplitude is not affected by the cell velocity or the applied pressure drop.

The analysis of single RBCs in flow provides a versatile tool to identify and examine the influence of pathological
changes of RBC mechanical properties on their morphological dynamics, especially for cells with impaired deformability.
Furthermore, the presented technique can be used in future studies to probe the influence of plasma composition or drug
administration on RBCs dynamics, which could potentially provide a toolbox for lab-on-a-chip medical devices. From an
experimental perspective, the presented approach can be further used to study the dynamics and interactions of other objects,
e.g., cells, bacteria, algae, in microscale flows. In the context of hematology, the consequent next step will be to employ the
comoving tracking to provide experimental details about the hydrodynamic interactions between multiple RBCs in capillary
flows. Moreover, plasma proteins, such as fibrinogen, can be added to the surrounding fluid to tune the interactions between
individual RBCs and to probe the emerging dynamics with respect to the time scale of the time-dependent flow, thus, enabling
a better understanding of microvascular blood flow.
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