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Abstract 

Microplastic particle concentration at the sea surface is critical for quantifying microplastic transport across the 
water-air interface. Previous studies suggest that the concentration at the sea surface is enhanced compared to bulk 
concentration, yet little is known about the detailed mechanisms behind this enhancement. In this work, we model 
one particular process in simulation that may contribute to this enhanced surface concentration: bubble scavenging. 
Using lattice-Boltzmann Volume-of-Fluid simulations, we find that rising bubbles indeed generate a net flow of par-
ticles toward the surface. The efficiency of the process, however, highly depends on the microplastic particle surface 
properties. Clean, hydrophobic particles adhere much better to the bubble surface and are therefore transported 
significantly better than weathered, hydrophilic particles that are only entrained in the flow around a bubble.
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Introduction
Waves on the ocean surface create myriads of air bubbles 
[1] that rise to the surface and burst. During rise, bubbles 
can interact with particles suspended in the water [2–7] 
and enrich particle concentration prior to bubble burst 
by bubble scavenging [8–12]. At burst, bubbles eject 
fine water droplets into the air, either in the form of film 
droplets or jet droplets of various size depending on bub-
ble diameter [13–21]. This process is associated with aer-
osol production [10, 22–25], including bacteria [26, 27] 
and organic compounds [28]. Besides these, bursting can 
also lead to the ejection of microplastic particles into the 
air [29–33] similar to microplastic ejection by impacting 
raindrops [34].

Knowing the concentration of microplastic particles 
in the sea surface microlayer (SML) is key for estimat-
ing environmental relevance of this water-air transport. 
Experimental studies show large local variations in 

marine microplastic particle concentration [35–38], and 
find that concentration at the SML is largely enhanced 
compared to bulk concentration [39–41], yet don’t iden-
tify the mechanisms leading to this difference in concen-
tration between SML and bulk.

In this work we investigate vertical microplastic trans-
port in the water column with the bubble scavenging 
mechanism by using computer simulations. Specifically 
we aim to understand the impact of particle wetting 
properties on transport efficiency.

Methods
Volume‑of‑Fluid lattice Boltzmann method
In this work we use the Volume-of-Fluid (VoF) lattice 
Boltzmann method (LBM) implementation FluidX3D 
[34, 42–47] that has been extended to simulate rising 
bubbles with Hoshen-Kopelman [48] volume tracking 
and the ideal gas law

The method is thoroughly validated in [34, 44–47, 49]. 
VoF provides three classes of Cartesian grid points – 
fluid, interface and gas. The fluid phase is simulated with 
regular LBM, the interphase is kept sharp at a thickness 

(1)pV = nRT = const.
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of one lattice cell and handles surface tension, and the 
gas phase is not simulated and treated as vacuum. To 
accommodate for bubbles, all separate gas domains are 
tracked with a Hoshen-Kopelman approach, computing 
their volume and pressure. Since our simulations are iso-
thermal, the product pV  must remain constant, which is 
ensured by modifying density in reconstructed gas equi-
librium populations in the VoF-LBM model. Special con-
sideration is given to events when a bubble splits in two 
or more smaller bubbles or when two or more bubbles 
merge, for which trigger events are detected [47].

Immersed‑boundary method
Microplastic particles are modeled by the immersed-
boundary method (IBM) as in [34, 42]. A single IBM 
point-particle (with an effective hydrodynamic diameter 
of the lattice constant) corresponds to one microplastic 
particle. These IBM particles are neutrally buoyant and do 
not interact with each other, reflecting the natural situa-
tion where the microplastic concentration is expected to 
be rather low (between 1 to 7 particles per liter [35, 50]). 
Neutral buoyancy simplifies the IBM to one-way-coupling, 
meaning particles are only passively advected by the veloc-
ity field and interface forces and do not exert forces back 
on the fluid. In addition, the non-interaction allows us 
to simulate high particle concentrations for statistically 
meaningful results and then linearly scale down concen-
trations to environmental estimates. Unlike in an experi-
ment, where such a large concentration would significantly 
increase Einstein viscosity, there is no change in viscosity 
in the simulation as the particles are modeled as point-par-
ticles rather than spheres.

For this study, the interaction of the particles with the 
water surface is critical. We consider two scenarios: 

1 Non-sticky particles: Particles are only prevented 
from leaving the water phase with a repelling hard 
potential as in [34].

2 Sticky particles: Particles are prevented from leaving 
the water phase with a repelling hard potential as in 
[34], but additionally, once entering the direct vicin-
ity of the water surface (distance of one lattice cell or 
less), a second attracting hard potential locks them 
onto the surface.

A technical difficulty in both situations is that the exact 
surface position in VoF-LBM is unknown. Hence the 
approach is to apply a repelling force if during trilinear 
velocity interpolation for a particle on the grid, at least 
one of the eight grid points is gas. The force is applied by 
replacing the unknown velocity of the gas point with the 
lattice speed of sound ( 1√

3
 grid cells per time step, the 

fastest velocity possible in LBM units) in direction 

opposed to the local surface normal approximation. In 
case of a sticky surface, an attractive force is applied if at 
least one of the eight points is interface. This is done by 
adding the lattice speed of sound in the direction of the 
local surface normal approximation to the fluid velocity 
at the interface point.

In nature, other electrostatic interactions between 
particles bubble vortex also play a role [51], which are 
neglected by our simplified model. Further, the shear 
forces in the bubble vortex may separate particle aggre-
gates and enhance particle fragmentation, but these 
effects are also not taken into account, as we only study 
non-interacting, single particles.

Simulation parameters
All simulations are carried out with these parameters for 
water: kinematic shear viscosity ν = 1.0 · 10−6 m2

s  , den-
sity ρ = 1000

kg

m3 , surface tension σ = 0.072
kg

s2
 , gravita-

tional acceleration g = 9.81 m
s2

 . To eliminate one possible 
complication in the model, the microplastic particles 
have neutral buoyancy with a density of ρp = 1000

kg

m3.
With a resulting Bond number of Bo = 2.18 and Mor-

ton number Mo = 2.63 · 10−11 , the expected bubble 
behavior is between “spherical” and “wobbling” [52]. This 
behavior is matched by our simulations (Figs. 1 and 3).

Results and discussion
Rising bubbles in a water column can pick up particles 
in a process known as bubble scavenging [8–12]. Other 
works have already found that the microplastic concen-
tration at the water surface is enriched [39–41], yet the 
mechanism for this enrichment is not identified. This 
suggests that bubble scavenging may apply to microplas-
tic particles as well. We quantify this on a model system 
with computer simulations.

It is expected that weathered particles in nature stick 
less to the water surface due to their increased hydropi-
licity [7, 53–55]. Thus we separately investigate the trans-
port of weathered, non-sticky particles, and clean, sticky 
particles.

The simulation box geometry is 1.6 cm × 1.6 cm × 12.8 cm 
(Figs. 1 and 3) and the boundaries in horizontal direc-
tions are periodic. One bubble with diameter db = 4mm 
is initially placed at zinitial = db and the simulation 
is terminated once the bubble reaches the position 
zfinal = 32 db − db , so the bubble travels a total distance 
of hb = 12 cm . The microplastic particle concentration 
is set to C = 105 particles per cm3 . The total particle 
count is about 3269298 with slight variation depending 
on lattice resolution in the simulation. A concentration 
this high allows to obtain accurate particle counts with 
just a single simulation. In simulation units, the bubble 
diameter is set to dsimb = 74 . This corresponds to the 
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maximum box size allowed by the 40GB GPU mem-
ory on the Nvidia A100 which is used in the present 
simulations.

The simulated bubble travels the distance of 
hb = 0.12m in t = 0.88 s , resulting in an average veloc-
ity of 136 mm

s  (equivalent to Reynolds number Re = 545 ), 
less than the experimental value of approximately 200 mm

s  
[56]. This is expected, because in the simulation, the bub-
ble starts with zero velocity and the flow needs to accel-
erate first. The behavior of a mostly spherical, wobbling 
bubble matches experimental findings [52].

Transport of non‑sticky particles
Figure 1 shows the simulation of the rising bubble where 
particles do not stick to the water surface. At first the 
bubble rises straight, but after the initial acceleration 
phase it pursues a spiraling trajectory, visible when it 
goes behind the slice of visualized particles and then 
comes back to front. This rotational behavior is consist-
ent with experimental observations [51, 57]. At the end of 
the image series, the bubble passes half-way through the 
lateral periodic boundaries. Particles are colored by their 
initial z-position to be able to see where particles move in 
the vertical direction. A plume of particles is clearly vis-
ible in the lower half of the column, where the bubble still 
has been traveling in the plane of visualized particles.

In perfectly laminar flow and in the absence of addi-
tional effects beyond hydrodynamics, net particle trans-
port through entrainment – particles dragged up by the 
flow around the bubble – would be impossible due to 
symmetry of the flow. Only when leaving the laminar 
regime, this transport mode is possible. Observations 
indicate that hydrophobic particles then may drop into 
the sub-bubble vortex [57]. The 4mm diameter bub-
ble is well outside the laminar flow regime at Re = 545 , 
reflected in the clearly asymmetric distribution of trave-
led vertical particle distance in Fig. 2.

Fig. 1 Illustration of the simulation for the rising bubble (particles do not stick to the bubble). The bubble ascends in a spiral as a result of 
non-laminar flow. Particles are colored by initial z-position. Images are not in uniform time intervals, but in uniform intervals of traveled distance. 
This figure is provided as a video in the Supplementary file

Fig. 2 The distribution of the vertical travel distance of microplastic 
particles relative to the travel distance of the bubble. In this 
simulation, particles do not stick to the bubble. The vast majority 
of values are around 0 (logarithmic scale), but the distribution 
clearly is asymmetric towards positive distances, indicating particle 
entrainment as a consequence of non-laminar flow
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When taking the average of the traveled vertical distance 
for all particles and dividing by the traveled vertical distance 
of the bubble, havg ,rel = 1

hb

1
N

∑N
i=1 hi = −8.56 · 10−4 , with 

N = 3269298 , the value is negative. This is expected, 
because the bubble volume, devoid of particles, starts at the 
bottom and moves to the top, so the fluid containing the 
particles has a net downward movement. To compute the 
net particle movement, the number of particles expected in 
the bubble volume Nb = C ·

π
6 d3b = 3351 , times the dis-

tance traveled by the bubble hb = 0.12m is added:

So overall the net movement almost cancels out.

Transport of sticky particles
A possibly very efficient mechanism for particle trans-
port is sticking of particles to the water-air interface of 

(2)havg ,rel,net =
1

hb

1

N + Nb
Nb hb +

N

i=1

hi =

(3)=
1

hb

1

N + Nb

(

Nb hb + havg ,rel N hb
)

=

(4)=
1

N + Nb

(

Nb + havg ,rel N
)

=

(5)=+ 1.69 · 10−4

the bubble thus dragging the particles along with the 
rising bubble as shown in Fig. 3. Indeed, in simulations 
with sticking particles, the distribution of traveled ver-
tical distance in Fig.  4 shows that the bubble picks up 
more and more particles along its ascent and transports 
them the remaining way up.

The average relative particle distance havg ,rel =
1

hb

1

N

∑N

i=1

hi = +2.84 ⋅ 10−3 now is clearly positive. The net average 
relative particle distance

then also is positive, meaning direct capture does enrich 
the particle concentration at the water surface.

(6)havg ,rel,net = +3.86 · 10−3

Fig. 3 Illustration of the simulation for the rising bubble (particles stick to the bubble). Particles are colored by initial z-position. Images are not in 
uniform time intervals, but in uniform intervals of traveled distance. The rising bubble initially plunges a void in particle concentration that quickly 
disappears again due to mixing. This figure is provided as a video in the Supplementary files

Fig. 4 The distribution of the vertical travel distance of microplastic 
particles relative to the travel distance of the bubble. Here particles 
stick to the bubble. The bubble picks up new particles along the 
entire distance of travel and transports them to the top, visible as a 
plateauing distribution highlighted by the red line
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Figure 4 shows the effects of both particle entrainment 
and direct capture. A plateau is visible from about 0.4 hb 
to 1.0 hb (red line). From this plateau we calculate an 
effective cross-section area in which any particle gets 
stuck to the ascending bubble: While the bubble travels 
between 0.4 hb to 1.0 hb , traversing a distance of 
h = 0.072m , it picks up N = 20369 particles. With the 
known initial concentration of C = 105 particles per cm3 , 
this number of particles corresponds to a fluid volume of 
V =

N
C = 2.0 · 10−7 m3 and cylindrical cross-section area 

A =
V
h
= 2.83 · 10−6 m2 . This is A

(db/2)
2 π

= 23% of the 
cross-section area of the bubble, along which the bubble 
picks up any particle that it encounters and transports it 
to the surface. In other words, particles in the inner part 
of the cylindrical column of water above the bubble, 
when following the streamlines in the flow field created 
by the bubble, get close enough to the water surface on 
the upper half of the bubble to stick to it.

Finally, we verify the influence of numerical grid reso-
lution on our results. For lower simulation resolution, 
we find cross-section areas of 29% ( dsimb = 48 ), 31% 
( dsimb = 32 ) and 38% ( dsimb = 24 ), all of which are similar 
to 23% in Fig. 4. The larger values for lower resolution are 
a result of the hard-potential around the bubble surface 
extending by one lattice point, so for a smaller bubble in 
simulation units, the relative thickness of the hard poten-
tial is larger, increasing the bubble radius of influence 
where particles adhere to the interface.

Conclusions
On the simulation model of a 4 mm diameter air bubble, 
we investigated the interactions between microplastic 
particles and air bubbles in water during bubble scav-
enging, when particle diameters are significantly smaller 
than the bubble diameter. We considered two possi-
ble mechanisms: entrainment – particles being dragged 
up in the non-laminar flow caused by the bubble – and 
direct capture – particles sticking to the bubble. The 
sticking mechanism is expected to be particularly rel-
evant for hydrophobic microplastic particles. Pristine 
particles are indeed rather hydrophobic and thus tend 
to stick to bubbles, but become increasingly hydrophilic 
when left weathering in the environment, sticking less to 
bubbles. Our simulations indicate that the direct capture 
mechanism significantly increases vertical upward trans-
port in the water column when bubbles are present. We 
therefore conclude that particle weathering may decrease 
upward transport in the water column during bubble 
scavenging. However, future laboratory experiments are 
needed to confirm our results.
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