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Abstract
The simulation of viscoelastic liquids using the Lattice–Boltzmann method
(LBM) in full three dimensions remains a formidable numerical challenge.
In particular the simulation of strongly shear-thinning fluids, where the ratio
between the high-shear and low-shear viscosities is large, is often prevented by
stability problems. Here we present a novel approach to overcome this issue.
The central idea is to artificially increase the solvent viscosity which allows the
method to benefit from the very good stability properties of the LBM. To compen-
sate for this additional viscous stress, the polymer stress is reduced by the same
amount. We apply this novel method to simulate two realistic cell carrier fluids,
methyl cellulose and alginate solutions, of which the latter exhibits a viscosity
ratio exceeding 10,000.
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1 INTRODUCTION

Microfluidic technologies involving living cells are becoming increasingly popular. Examples include medical diagnostics,
where the pathological alteration of cell properties can serve as a marker for disease detection1 or biofabrication where
living cells are printed to create artificial tissues.2–4 In all these applications cells are suspended in a cell carrier fluid which
typically contains dissolved polymers making the fluid highly viscoelastic and shear-thinning. The motivation behind
using viscoelastic fluids differs between applications. In medical diagnostics, the viscous stress must be large enough
to achieve detectable cell deformation, while in biofabrication the printed construct must be stable enough to retain its
shape after the printing process. To satisfy the latter requirement, cell carriers used in biofabrication (“bioinks”) typically
exhibit a very high viscosity ratio with the zero-shear viscosity being many orders of magnitude larger than the pure
solvent viscosity.5

To understand the rheology of such complex liquids in non-trivial geometries, computer simulations are an invaluable
tool. While a number of numerical techniques have been developed, the simulation of viscoelastic liquids remains an
involved subject,6 in particular for high viscosity ratios. A very popular simulation technique for Newtonian fluids is
the Lattice–Boltzmann method (LBM)7 due to its simplicity and high parallelizability. LBM has also been extended to
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viscoelastic situations, mainly in two8–24 but occasionally also in three25–36 dimensions. We will discuss these approaches
in detail in Section 3 below. To alleviate stability problems, some of these works include an artificial diffusivity of the
polymer stress,25,29,31,34 or perform special decompositions of the stress tensor.13 Despite these improvements, however,
none of these methods has been applied to very high viscosity ratio fluids which are often used as cell carrier fluids in lab
experiments or technological applications.

To fill this gap, here we develop a new variant of viscoelastic LBM which allows the stable and accurate simulation of
very high viscosity ratio fluids. Our technique is based on the insight that stability issues in traditional viscoelastic LBMs
arise due to an imbalance between the very large polymer stress and the much smaller viscous stress of the solvent. We
overcome this issue by moving (“shuffling”) part of the polymer stress into the viscous part of the LBM algorithm.

2 RHEOLOGY OF CELL CARRIER FLUIDS

2.1 Experimental data

To illustrate our novel LBM algorithm, we consider two prototypical cell carrier fluids. The first is an alginate solution
which is often used in biofabrication but can also serve as a common food additive. Our solution contains 4 % w/v alginate
dissolved in ultrapure water and was measured in a commercial plate-plate rheometer (see Appendix A for experimental
details). The shear-dependent viscosity 𝜂 and the first normal stress difference N1 are shown as function of shear rate in
Figure 1. We note the very high zero-shear viscosity of more than 10,000 mPa s. Bioinks in biofabrication are in general
characterized by such high viscosities to guarantee stability of the printed construct. At the same time, during the actual
printing process when the material is flowing, the viscosity should be as low as possible to avoid excessive mechanical
stress on the embedded cells. This motivates the use of highly shear-thinning viscoelastic fluids in biofabrication.

The second cell carrier fluid modeled in this work is a methyl cellulose solution which is commonly used in
real-time-deformation-cytometry (RT-DC) experiments. RT-DC experiments allow very high-throughput measurements
of cell mechanical properties and have been used successfully for disease detection by screening blood samples. We extract
our data from Reference 37 where the shear rheology of methyl cellulose was measured using a plate-plate and cone-plate
rheometer. Three concentrations of 0.49%, 0.59% and 0.83% methyl cellulose in phosphate buffered saline (PBS) were
investigated, and their rheology is shown in Figure 2.

(A)

(B)

F I G U R E 1 Rheology data for alginate solution from 21 measurements of the viscosity (A) and normal stress (B). Orange lines show a
fit of the Phan-Thien and Tanner (PTT) rheological model. [Colour figure can be viewed at wileyonlinelibrary.com]
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166 KELLNBERGER et al.

(A)

(B)

F I G U R E 2 The viscosity (A) and normal stress (B) of a methyl cellulose solution from Reference 37. Lines show a fit of the Phan-Thien
and Tanner (PTT) rheological model.

2.2 Fitting data with the PTT model

Due to the complexity of viscoelastic fluids, there is an abundance of (semi-)empirical models to describe rheological
data. Common options include the Oldroyd-B38 and the FENE-P model.39,40 The Oldroyd-B model is not appropriate
for most real complex fluids as it features a shear-independent viscosity in clear contradiction to the experimental data
presented in Figures 1 and 2. A good fit to our data was obtained with the so-called Phan-Thien and Tanner (PTT) model
by Phan-Thien and Tanner41 and Phan-Thien42 which has been developed explicitly for polymer networks in solution
and thus appears to capture well the essential physics behind the alginate and methyl cellulose solutions.

The PTT model can be written in the form of a differential equation for the polymer stress 𝜏43:

∇
𝜏 = −𝜉(𝜏 ⋅ D + D ⋅ 𝜏) − e

𝜖𝜆

𝜂p
Tr𝜏 𝜏

𝜆
+ 2

𝜂p

𝜆
D, (1)

where D is the strain rate tensor. We note that Reference 43 have also studied extended forms of the PTT model with
a Mittag–Leffler instead of an exponential function, whereas here we restrict ourselves to the exponential version. The
polymer viscosity is denoted 𝜂p and 𝜆 is the corresponding relaxation time. 𝜖 is the so-called extensibility parameter which
controls at which shear rates thinning takes place and 𝜉 describes the slip in the polymer network which we will set to
zero in the following. The upper convected derivative of an arbitrary tensor A is defined as follows:

∇
A =

DA
Dt

−
(
(∇u⃗)T ⋅ A + A ⋅ (∇u⃗)

)
, (2)

where u⃗ is the fluid velocity and (∇u⃗)ij = ∇iu⃗j. The material derivative is

DA
Dt

=
𝜕A
𝜕t
+ (u⃗ ⋅ ∇)A. (3)

Finally, the total fluid stress 𝜎 is the sum of the polymer stress 𝜏 and a solvent stress due to the Newtonian solvent with
viscosity 𝜂s:

𝜎 = 𝜏 + 2𝜂sD. (4)
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KELLNBERGER et al. 167

T A B L E 1 Parameters of the PTT model obtained by fitting to the rheological measurements in Figures 1 and 2 along with
corresponding viscosity ratios from Equation (7).

Fluid 𝜼p∕mPa s 𝝀∕ms 𝝐 R𝜼

alginate 4% w/v (48.2 ± 0.4) × 103 343 ± 4 0.545 ± 0.010 4.82 × 104

methyl c. 0.49% 18.7 ± 0.4 0.344 ± 0.003 0.270 ± 0.003 18.7

methyl c. 0.59% 32.5 ± 0.7 0.433 ± 0.004 0.365 ± 0.004 32.5

methyl c. 0.83% 81 ± 2 0.714 ± 0.009 0.496 ± 0.006 81

T A B L E 2 Compilation of literature data on typical bioinks showing that a very viscosity ratio R𝜂 is a generic feature of these liquids.

Author Material 𝜼0∕Pa s 𝜼∞∕Pa s R𝜼 Extracted from

Amorim46 Pre-crosslinked alginate > 1 × 104
< 3 × 10−1

> 3 × 104 Figure 3B

Pössl2 Blend 2 × 102 5 × 10−1 4 × 102 Figure 4

Paxton5 Alginate 5 × 104
< 5 × 101

> 1 × 103 Figure 4B

Jalaal47 Pluronic F-127 > 1 × 103
< 1 × 10−1

> 1 × 104 Figure 6E

For a simple shear flow in the xy-plane of a PTT fluid with 𝜉 = 0, an analytical expression for 𝜂 and N1 can be derived
as detailed in Appendix B:

𝜂(𝛾̇) =
𝜂p

exp
[
0.5W0

(
4𝜖Wi2)] + 𝜂s, (5)

N1 =
𝜂p

2𝜖𝜆
W0

(
4𝜖Wi2)

, (6)

where Wi = 𝜆𝛾̇ is the Weissenberg number and W0 is the Lambert W -function. Fitting these equations to the rheological
data for alginate and methyl cellulose leads to satisfactory agreement as shown in Figures 1 and 2. In the fit, the solvent
viscosity was fixed at 𝜂s = 1 mPa s as the viscosity of the PBS buffer. The obtained parameters are given in Table 1.

We introduce the ratio between the polymer and the solvent viscosity and express it as a ratio between the viscosity at
zero shear rate, 𝜂0, and the viscosity at infinite shear rate 𝜂∞:

R𝜂 =
𝜂p

𝜂s
= 𝜂0 − 𝜂∞

𝜂∞
, (7)

which we and others found to be an important parameter to determine numerical stability of LB simulations, especially
if no artificial diffusivity is used.17,25 This ratio can similarly be defined for other models such as FENE-P or the inelastic,
but shear-thinning Carreau-Yasuda model44,45 using the zero-shear viscosity 𝜂0 and the infinite-shear viscosity 𝜂∞. For
our alginate solution we obtain R𝜂 = (48.2 ± 0.4) × 103, indicating that the solution viscosity at very low shear rates
is more than four orders of magnitude larger than the solvent viscosity which represents a severe challenge to standard
numerical algorithms. That this characteristic is not unique to alginate, but is in fact a generic feature of cell carrier fluids
used in bioprinting is shown in Table 2 where rheological data from various literature sources have been compiled into a
single format to determine R𝜂 . The 0.49% methyl cellulose solution used in RT-DC measurements, in contrast, features a
much lower value of R𝜂 = 18.7 ± 0.4.

3 EXISTING LBM METHODS

Since the early days of LBM, variants for viscoelastic fluids have been developed. Keeping in mind our target geometries,
we focus here on three dimensional formulations. The first approaches avoided an explicit modeling of a viscoelastic
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168 KELLNBERGER et al.

T A B L E 3 Covered ranges of Wi and R𝜂 for existing 3D LB methods.

Author max(Wi) max(R𝜼) R𝜼 estimation

Malaspinas25 10 9 In 4.3: R𝜈 = 0.1 and Equation (38)

Gupta26 100 0.7 In IV.B: 𝜂p

𝜂A+𝜂p
= 0.4

Ma29 100 9 In 4.1: 𝛽 = 𝜇s
𝜇s+𝜇p

= 0.1

Onishi30 ? 1 In 3.1: 𝛽 = 𝜇p

𝜇s+𝜇p
and Table 1: 𝛽 = 0.5

Wang31 “up to O(1)” 5 In II: 𝜂p = c𝜂s and Figure 9: c = 5

Su33 10 1 In II: 𝛽 = 𝜂s
𝜂s+𝜂p

and In IV.A: 𝛽 = 0.5

Gupta27 ? 0.7 In 2: 𝜂p

𝜂d
= 0.4 and 𝜂d = 𝜂A + 𝜂p

Kuron35 1 9 In 4.1: 𝛽 = 0.9 and Equations (14) and (15)

Gupta36 80 0.7 In 3: 𝜂p

𝜂c,d+𝜂p
= 0.4

Onishi24 1000 1 In 3.2: 𝜂p

𝜂s
= 1

constitutive equation and simply modified the LB collision operator to obtain a basic viscoelastic fluid obeying Jeffery’s
model.28 This can also be achieved by the introduction of a second local stress tensor.32 More advanced approaches include
the work of Onishi et al.24,30 who considered a non-shear-thinning Oldroyd-B model using a microscopic Fokker-Planck
equation for the polymer dumbbells. The work of Reference 31 solved the advection part of the model using a second LBM
running in parallel to the Navier–Stokes LBM. The same technique was used by Malaspinas et al.25 and Ma et al.29 for the
Oldroyd-B and FENE-P models. Later, hybrid schemes coupling an LB solver for the solvent to a finite-difference26,27,36

or finite-volume35 scheme for the polymer stress (or, alternatively, the polymer conformation) tensor were introduced.
To improve numerical stability, some authors propose the inclusion of an artificial diffusivity,25,29,31,34 which introduces
a small error compared to the analytical solution of the constitutive equation. Others perform special decompositions of
the stress tensor.13 Coupling of the resulting polymer stress to the Navier–Stokes LBM can be achieved via the inclusion
of point forces or via a modification of the equilibrium populations. Both methods have recently been compared in 2D.17

The stable range of Weissenberg numbers covered by existing methods is up to Wi ≈ 10 for the method of Reference
25 and up to Wi ≈ 100 in References 26,29, and 36. However, another stability criterion, which is often overlooked is the
viscosity ratio R𝜂 as defined in Equation (7). Existing methods often stay at or below R𝜂 = 1,26,27,30,31,33 while others report
being limited below R𝜂 = 1025,29,35 according to Malaspinas et al. due to stability issues. The details are listed in Table 3.
Comparing to the rheological data presented in Figures 1 and 2, we conclude that existing LB methods appear to be
appropriate only for relatively dilute solutions and in particular do not cover the viscosity ratio required by technologically
important cell carrier fluids such alginate and methyl cellulose. We therefore set out to develop a novel viscoelastic LBM
scheme which we will present in the next section.

4 NUMERICAL METHODS

Our algorithm contains a Lattice–Boltzmann solver for the Navier–Stokes equations of the solvent, a finite-volume solver
for integrating the polymer stress and finally our newly developed viscosity shuffling method.

4.1 Lattice–Boltzmann for Navier–Stokes

The Lattice–Boltzmann method (LBM) has become a standard tool in numerical fluid mechanics,7 and we therefore only
mention the key choices here. Further details can be found in the Appendix E or in literature. We use a D3Q19 lattice
in full three dimensions together with a single relaxation time (SRT) collision operator. Various tests with a multiple
relaxation time (MRT) collision operator did not show significant differences. Our implementation is based on FluidX3D
which has been extensively used and validated in earlier publications.48,49 The core of the algorithm is implemented in
OpenCL and thus capable of running on GPUs from different vendors. Non-periodic boundaries are modeled using the
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KELLNBERGER et al. 169

half-way bounce back algorithm. To model fixed inflow/outflow, bounce back boundaries using a Dirichlet boundary
condition as described by Krüger et al.7 are used.

Physical units are mapped to lattice units to obtain a dimensionless relaxation time of 1. The employed lattice dimen-
sions vary for the different applications and are specified below. To drive the flow, we use either a constant body force
(modeling a physical pressure gradient) or inflow-outflow boundaries as specified in the different application scenarios
below.

4.2 Finite-volume for polymer stress

The spatio-temporal dynamics of the polymer stress 𝜏 is given by Equation (1) in the form of an advection-reaction
equation. We solve this equation by a finite-volume scheme running in parallel (with identical time step) to the LBM
solver. For this, the simulation volume is subdivided in 1 × 1 × 1 (in LU) cubes centered around each lattice node. The
average value of 𝜏 within these volumes is takes as the value at the lattice node. Advection is handled using the corner
transport upwind scheme (CTU).35 CTU considers the finite volume cell to be virtually displaced by u⃗Δt, where u⃗ is the
local velocity and Δt is the size of a time step. The resulting overlap with the neighboring cells (as a fraction of the cell
volume) dictates what percentage of the polymer stress currently located at the cell is advected to the respective neighbor.
This scheme prevents checkerboard instabilities. The remaining derivatives are calculated using finite differences. At the
walls, which coincide with the surfaces of the finite volumes, a zero-flux boundary condition for the stress is used. The
source terms are integrated using the Euler method.

To include the polymer stress into the LBM, we use the stress coupling scheme according to Dzanic et al.17,26,30

Specifically, we implement the LBM collision as follows.

fi
(

x⃗ + c⃗iΔt, t + Δt
)
− fi(x⃗, t) = −

Δt
𝜏r

[
fi(x⃗, t) − f eq

i (x⃗, t) + Bi
]
. (8)

Here, fi are the populations, f eq
i are the equilibrium populations, c⃗i are the lattice velocities, Δt is the time step, 𝜏r is the

relaxation time and Bi are the stress contributions defined as follows.

Bi = wi

(
c⃗ic⃗i

2c4
s
− 1

2c2
s

)
∶ 𝜏′. (9)

Here, wi are the lattice weights, cs is the lattice speed of sound and 𝜏′ is the stress tensor to be coupled into the LBM. In the
case of viscoelastic fluids this typically is the polymer stress tensor. For our method this tensor is modified as described in
the following section. The colon denotes the Frobenius inner product. To handle inflow/outflow boundaries, the polymer
conformation tensor is specified on the boundary and advected using the corner transport upwind scheme.

4.3 Novel viscosity shuffling

The key difficulty for simulating many realistic viscoelastic fluids is the imbalance between the viscous stress of the solvent
and the polymer stress. While the former is handled efficiently and reliably by the LBM streaming-collision scheme,
the latter enters the LB equations as an additional source term. The relative magnitude of the two terms is given by the
viscosity ratio R𝜂 as defined in Equation (7) which for many situations is of the order of 102 − 103 (see Figures 1, 2 and
Table 2). The key idea of our scheme is to artificially increase the LBM viscous stress while at the same time reducing the
polymer stress by the same amount. Starting from Equation (4), we write

𝜎 = 2𝜂sD + 𝜏shuffle + 𝜏 − 𝜏shuffle, (10)

with the transferred (“shuffled”) stress

𝜏shuffle = 2𝛼s𝜂pD, (11)
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170 KELLNBERGER et al.

containing an arbitrary parameter 𝛼s. Finally, this results in

𝜎 = 2
(
𝜂s + 𝛼s𝜂p

)
D +

(
𝜏 − 2𝛼s𝜂pD

)
. (12)

In practice, the shuffling parameter 𝛼s is chosen before the start of the simulation. The LBM solver is run with 𝜂s + 𝛼s𝜂p
as its viscosity. The polymer stress determined by Equation (1) is reduced by the amount 2𝛼s𝜂pD at every time step before
𝜏
′ = 𝜏 − 2𝛼s𝜂pD is coupled into the LBM.

Using this procedure, we balance the stress contributions of the LB and the polymer components which vastly
improves numerical stability. We emphasize that, in contrast to other remedies such as adding artificial diffusivity,25,29,31,34

our viscosity shuffling algorithm is mathematically exact and does not affect the physics of the simulated system. The
only trade-off of our viscosity shuffling scheme is that the increased LB viscosity decreases the LB time step if the lattice
relaxation time is maintained at its optimal value of 1. In the following section we validate this novel approach against
analytical solutions for realistic parameters and compare its accuracy to existing algorithms.

5 VALIDATION AND ACCURACY

To validate our viscosity shuffling algorithm and to assess its accuracy, we compare simulated velocity fields to
semi-analytical solutions in planar and cylindrical Poiseuille flow. For the PTT model given in Equation (1) with an
additional solvent stress contribution as in Equation (4) a full analytical solution is not known for planar or cylindrical
Poiseuille flow. Based on the work of Reference 50 we can nevertheless derive a semi-analytical solution in Appendix B
which will serve to validate our numerical algorithm. A validation in simple shear flow can be found in Appendix C.

We start by simulating the alginate and 0.49% methyl cellulose solutions with a viscosity ratio R𝜂 = 48.2 × 103 and
R𝜂 = 18.7, respectively, in 2D planar Poiseuille flow. In physical units the channel has a height of 20 μm which are dis-
cretized with 41 LBM nodes. For the viscosity shuffling, we set 𝛼s = 1 here and check different values further below. Along
the flow direction, the channel is periodic, and the flow is driven by a pressure gradient of −1 × 107 Pa

m
for alginate and

approximately −1.2 × 107 Pa
m

for methyl cellulose. The velocity field is initialized with zero. For methyl cellulose, we sim-
ulate the full temporal evolution with the polymers starting in the unstretched configuration. In the case of alginate, we
speed up the convergence and start from a situation in which the polymers are pre-stretched. For this we calculate 𝜏xx and
𝜏xy using Equations (B23) and (B10) using the 𝛾̇ calculated from Equation (B45). The polymer stress is then initialized
using these values. After 2 × 109 LBM time steps for alginate and 5 × 106 LBM time steps for methyl cellulose correspond-
ing to approximately 1.6 ms and 2.4 s of physical time, respectively, the simulation is stopped and the flow field u(y) is
compared to the semi-analytical solution. An artificial increase of the Reynolds number to reduce computational time is
possible in principle, but is not employed here to bring out clearly the characteristics of our method. As shown in Figure 3,
very good agreement is found. The time evolution of the center-line velocity is shown in Figure D1 of the Appendix. For
a quantitative assessment, we compute the L2 error as follows.

eL2 =

√√√√
∑

i
[
u⃗i − u⃗(yi)

]2

∑
i u⃗(yi)2

. (13)

Using the simulated velocities u⃗i and the semi-analytical results u⃗. This gives 9 × 10−4 and 1 × 10−3 for alginate and methyl
cellulose, respectively. The spatially resolved L1 error defined as follows is shown in Figure D2 in the Appendix.

eL1 =
u⃗i − u⃗(yi)

u⃗(yi)
. (14)

These conclusions remain unchanged even when varying the pressure gradient, and thus the flow velocity, over many
orders of magnitude as shown in Figure D3A of the Appendix. Similarly, the exact value of 𝛼s does not matter as can be
seen in Figure D6.

We proceed to evaluate the viscosity shuffling method for a cylindrical Poiseuille flow. The semi-analytical solution
for this situation can be derived similarly as for the planar case and is given in Appendix B. Numerically, the cylindrical
situation is slightly more complex due to discretization errors (“staircase effect”) when mapping the rounded channel
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KELLNBERGER et al. 171

(A)

(B)

F I G U R E 3 (A) Velocity profile of alginate in planar channel flow. (B) Velocity profile for methyl cellulose. [Colour figure can be
viewed at wileyonlinelibrary.com]

(A)

(B)

F I G U R E 4 (A) Velocity profile of alginate in cylindrical channel flow. The time evolution of the center-line velocity when starting
from a pre-stretched configuration (see main text) is shown in Figure D4. (B) Velocity profile for methyl cellulose. [Colour figure can be
viewed at wileyonlinelibrary.com]

walls onto the rectilinear LBM grid.49 We use the same material parameters as above, but double the pressure gradient to
−2 × 107 Pa

m
and approximately −2.5 × 107 Pa

m
, respectively, thereby mirroring the relation in Newtonian Poiseuille flow

where twice the pressure is required to obtain the same flow rate in cylindrical compared to planar geometries. The
channel has a diameter of 20 μm and is discretized with 41 lattice points in y and z direction. Again, we initialize the
polymers in the unstretched state for methyl cellulose and in the stretched state for alginate. The resulting velocity profile
can be seen in Figure 4 and shows almost equally good agreement as for the planar case with an L2 error of 0.014 and
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F I G U R E 5 L2 error as defined in Equation (16) from Malaspinas et al.25 (dots) compared to our algorithm (x) as a function of grid
resolution. Blue and green crosses are not visible as they overlap exactly with the orange and red crosses, respectively, showing that the
accuracy of our method is independent of Wi in the studied parameter range.

0.06, respectively. The spatially resolved L1 error in Figure D5 of the Appendix shows that this larger average is indeed
mainly attributable to the staircase effect as the error near the walls increases significantly. The time evolution of the
center-line velocity is shown in Figure D4 of the Appendix. The robustness against pressure gradient changes is shown
in Figure D3B of the Appendix.

Finally, we assess the quality of our algorithm by comparing to an existing study on viscoelastic LBM by Malapsinas
et al.25 The authors studied an Oldroyd-B fluid in a planar Poiseuille flow and compared the error in the simulated velocity
profile to an exact analytical solution. The Oldroyd-B model is a special case of the PTT model which is obtained by setting
𝜉 = 𝜖 = 0 in Equation (1) and is thus easily tractable with our code. In Figure 5, we show the L2 error as function of lattice
resolution for different values of Wi and R𝜈 which is defined as25

R𝜈 =
𝜈s

𝜈p + 𝜈s
, (15)

with the kinematic solvent and the polymer viscosity 𝜈s and 𝜈p. We note that this can directly be transformed into the
viscosity ratio used above as 1

R
𝜈

− 1 = R𝜂 . Furthermore, in agreement with Reference 25, also the L2 error is defined
differently than above, namely:

Eu =
1

umax

√
1
N
∑

|usimulation − utheory|2. (16)

At this point, we mention that there is a typographic mistake in eq (61) of Reference 25 where the prefactor should be 8
instead of 4.

As can be seen in Figure 5, the accuracy of our method does not depend on the Weissenberg Number and is generally
somewhat better than the method of Reference 25. We note a certain dependence of the accuracy on R𝜈 which we consider
nevertheless acceptable given the overall smallness of the error. Finally, we find that the error of our method decreases
with lattice resolution to the power of −2. The error found by Malaspinas et al. has a similar decrease for small N, but
sees less reduction at higher N.

6 EXAMPLE APPLICATIONS

To illustrate the use of viscosity shuffling in realistic applications, we study three typical experimentally relevant
situations. For ease of comparison, we use the 0.49% methyl cellulose in all three situations.
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(A)

(B)

(C)

F I G U R E 6 Velocity profile (A), von Mises stress (B) and shear stress (C) for methyl cellulose in a conical nozzle as used for
bioprinting. For the calculated viscosity see Figure D7 of the Appendix. [Colour figure can be viewed at wileyonlinelibrary.com]

The first application stems from bioprinting where the bioink is pushed through a conical nozzle.2–4 The nozzle radius
is 1.8 mm at the inlet and 200 μm at the outlet. The nozzle has a length of 18 mm. Due to the difference in inlet/outlet radii,
the system cannot be modeled with periodic boundary conditions, and we use inflow/outflow boundary conditions as
described in Section 4. The required values for velocity and polymer conformation are obtained from simulations of pipes
of the respective radii and a fixed volume flow of ≈ 3 μL

s
. The resulting flow field can be seen in Figure 6A. To quantify

the total stress as a single number, we use the von Mises stress which is defined as51:

𝜏vM =
√

3
2
𝜏

dev
ij 𝜏

dev
ij , (17)

with the deviator of the stress tensor defined as follows

𝜏
dev
ij = 𝜏ij −

1
3
𝜏kk. (18)

It can be seen in Figure 6B that the highest stresses arise at the nozzle exit in direct vicinity to the wall. This means that
even for fast flows, cells flowing close to the center experience less stress than cells flowing near the walls in agreement
with earlier results in Newtonian fluids.51

Our next example is the RT-DC geometry in which cells from a reservoir are squeezed through a narrow observation
channel1,52 with a square cross-section of 40 μm × 40 μm. For this simulation we use periodic boundary conditions and
a constant body force corresponding to a pressure gradient of 1 × 107 Pa

m
. In Figure 7, we show the velocity profile, the

von Mises stress and the shear component of the stress which is the relevant component if a local shear viscosity is to
be defined. There are three qualitative differences compared to a purely viscous fluid. Directly after the inlet we find a
region of low stress. Due to the fast advection, the polymers, despite being inside the constriction, have not reacted to the
increased fluid stress yet. Similarly, directly after the constriction, the high stress inside the observation channel persists
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(A)

(B)

(C)

F I G U R E 7 Velocity profile (A), von Mises stress (B) and shear stress (C) for methyl cellulose in a typical RT-DC geometry. For the
calculated viscosity see Figure D7. [Colour figure can be viewed at wileyonlinelibrary.com]

over a certain distance that is needed for the polymer stress to decay. If one would divide the stress in these two regions by
the strain rate in an attempt to obtain a viscosity one would find a very low and a very high viscosity respectively. These
can be outside the range of viscosities, that can be obtained through rheological measurements with the fluid. This effect
is even more pronounced along the walls directly after the outlet. Here the viscosities obtained in this manner become
negative. Due to the strain rate approaching 0 at several locations within the simulation volume, this calculation often
diverges. The clamped result can be seen in Figure D7. These discrepancies, especially the ones at the walls, show the
breakdown of the viscosity interpretation in viscoelastic cases and signify the regions of interesting behavior. This also
shows why viscoelastic simulations cannot always be replaced by purely viscous models and should be considered despite
the high computational cost.

With the third example we demonstrate the versatility of our approach which allows easy coupling to other LBM
extensions such as the immersed-boundary method. Here, we include a homogeneously elastic particle as a simple, yet
reasonably accurate, model for the mechanics of a living, biological cell.53 Coupling to the LBM solver is achieved with the
immersed-boundary method as described in earlier publications.54 For simplicity, we consider the viscoelastic fluid inside
and outside the cell to be identical. The cell is initially spherical with a radius of 6 μm and possesses a Youngs modulus of
100 Pa and a Poisson ratio of 0.48. It is placed into a shear flow with a shear rate of 400 1

s
where the cell quickly reaches

a steady state in which it deforms into a tank-treading ellipsoid. This is in qualitative agreement with simulations54 and
classical theories.55 For the discretization of the cell we use 5179 tetrahedrons and a radius of 6 lattice units. The lattice
with a resolution of 100 lattice points is chosen significantly larger than the cell to assure negligible impact of the walls.
The lattice is periodic in x and z direction. At the edges of the simulation box in y direction Dirichlet boundary conditions
are imposed.

In the von Mises stress shown in Figure 8 the effect of the cell is clearly visible. We observe four distinct regions of high
stress radiating outwards from the cell body. These are particularly pronounced along the longest axis of the deformed
cell.
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(B)(A)

F I G U R E 8 Cell in viscoelastic shear flow. (A) The 3D shape of the deformed cell and (B) a 2D cross-section of the von Mises stress.
[Colour figure can be viewed at wileyonlinelibrary.com]

7 SUMMARY AND CONCLUSION

In this work, we developed a novel simulation algorithm for viscoelastic fluids. Our method is based on the LBM for
the solvent combined with a finite-volume solver for the polymer dynamics. Its key novel ingredient is the introduction
of a shuffling parameter 𝛼s which shifts a substantial part of the polymer stress into the solvent contribution by artifi-
cially increasing the solvent viscosity. The algorithm compensates for this extra solvent stress by lowering—by the same
amount—the polymer stress thus leaving the total stress invariant. This procedure is mathematically exact and does not
introduce any additional physical approximations, but significantly increases numerical stability.

We applied the method to the simulation of two realistic cell carrier fluids: an alginate and a methyl cellulose sus-
pension. For simple situations such as shear and Poiseuille flow, we found very good agreement with (semi-)analytical
theories. Importantly, the outcome of the viscosity shuffling simulations is independent of the shuffling parameter 𝛼s. We
finally demonstrated the usability of our approach in realistic geometries such as constricting microchannels and conical
bioprinting nozzles.
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APPENDIX A. RHEOLOGY MEASUREMENTS OF ALGINATE SOLUTIONS

The solutions were prepared by dissolving alginate (DuPont VIVAPHARM Alginate PH176) in ultrapure water at a ratio
of 40 mg

mL
, which here is refereed to as 4% w/v. To ensure homogeneous dissolution, the material was stored at 37◦C for 24 h

and regularly mixed to ensure complete dissolution. The measurements were conducted with a 25 mm plate-plate geome-
try at a 500 μm gap on a rheometer (Anton paar MCR 702). A solvent trap was used to limit evaporation. All measurements
were done at a set temperature of 25◦C as shear rate sweep. Data is agglomerated from 21 independent measurements.
The first normal stress difference N1 is calculated from the measured normal force using the following equation56:
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N1 =
2F
𝜋R2 +

3
20
𝜌𝜔

2R2
, (A1)

where F is the measured normal force, R is the radius of the rheometer, 𝜌 is the density of the fluid and 𝜔 is the angular
velocity of the rheometer. The second term is usually omitted and as we found it to matter little, and as the quality of the
data we have available is too limited to warrant such detailed corrections, we also choose to omit it. A cone-rheometer
would be preferred here, but as N2 = 0 for PTT with 𝜉 = 0, the difference is negligible.

APPENDIX B. SEMI-ANALYTICAL SOLUTION FOR POISEUILLE FLOWS OF PTT FLUIDS
WITH SOLVENT VISCOSITY

Our derivation is similar to the one in Oliveira.50 The origin is placed in the center of the channel. The x-axis points in flow
direction. We solve both the three dimensional and the two dimensional case. In three dimensions we pick cylindrical
coordinates as follows.

x = x, (B1)

y = r cos𝜑, (B2)

z = r sin𝜑. (B3)

This unusual choice is to keep the coordinate systems consistent between the two- and three dimensional cases. For
two dimensions the y-axis points along the velocity gradient. This follows from the 3D case limiting 𝜑 to 𝜑 ∈ {0, 𝜋}.
Consequently, we define r = |y| in the 2D case. Note, that in 2D this leads to the sign being tracked explicitly as follows.

𝜕

𝜕r
= sgn(y) 𝜕

𝜕y
. (B4)

For both Poiseuille flow and shear flow, symmetry dictates, that the velocity is unidirectional:

u⃗ = ux(r)êx. (B5)

We also define the shear rate as follows.

𝛾̇(r) = 𝜕ux

𝜕r
≤ 0. (B6)

Note, that with this the shear rate is always negative. Also, 𝛾̇ is a constant for pure shear flow.
We start with the solutions of the constitutive equation.

B.1 Shear solutions
In two dimensions, the constitutive Equation (1) for 𝜉 = 0 in steady state easily reduces to the following. Note, that 𝜏 is
symmetric.

exp
(
𝜖𝜆

𝜂p
Tr𝜏

)
𝜏xx = 2𝜆sgn(y)𝛾̇𝜏xy, (B7)

exp
(
𝜖𝜆

𝜂p
Tr𝜏

)
𝜏xy = 𝜂psgn(y)𝛾̇ . (B8)

With Tr𝜏 = 𝜏xx. Note that all other components aside from 𝜏xx and 𝜏xy/𝜏yx are zero. We define 𝜏xr = 𝜏xysgn(y) ≤ 0 to get the
following.

exp
(
𝜖𝜆

𝜂p
Tr𝜏

)
𝜏xx = 2𝜆𝛾̇𝜏xr, (B9)
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KELLNBERGER et al. 179

exp
(
𝜖𝜆

𝜂p
Tr𝜏

)
𝜏xr = 𝜂p𝛾̇ . (B10)

The three dimensional case yields the same formula using significantly more math. We set 𝜉 = 0 and start from the
velocity gradient.

∇u⃗ = 𝜕ux

𝜕r
êr ⊗ êx. (B11)

This, together with the general formula for 𝜏,

𝜏 = 𝜏ijêi ⊗ êj, (B12)

is used to find the non-zero terms of the upper convected derivative in steady state as follows.

(∇u⃗)T ⋅ 𝜏 = 𝜕ux

𝜕r
êx ⊗ êr

(
𝜏xxêx ⊗ êx + 𝜏xrêx ⊗ êr + 𝜏x𝜑êx ⊗ ê𝜑

+ 𝜏rxêr ⊗ êx + 𝜏rrêr ⊗ êr + 𝜏r𝜑êr ⊗ ê𝜑
+ 𝜏𝜑xê𝜑 ⊗ êx + 𝜏𝜑rê𝜑 ⊗ êr + 𝜏𝜑𝜑ê𝜑 ⊗ ê𝜑

)
.

(B13)

With the orthonormality

êa ⊗ êbêc ⊗ êd = êaêT
b êcêT

d = êa(êb ⋅ êc)êT
d = êa(𝛿bc)êT

d = 𝛿bcêa ⊗ êd, (B14)

we can reduce this to the following.

(∇u⃗)T ⋅ 𝜏 = 𝜕ux

𝜕r
(
𝜏rxêx ⊗ êx + 𝜏rrêx ⊗ êr + 𝜏r𝜑êx ⊗ ê𝜑

)
. (B15)

The second non-zero term in the upper convected derivative due to the symmetry of 𝜏 is the transpose of this. Together
with the strain rate tensor, which is calculated using the velocity gradient from above, the complete constitutive equation
reads:

0 = 𝜕ux

𝜕r
[
2𝜏rxêx ⊗ êx + 𝜏rr(êx ⊗ êr + êr ⊗ êx) + 𝜏r𝜑

(
êx ⊗ ê𝜑 + ê𝜑 ⊗ êx

)]

− exp
(
𝜖𝜆

𝜂p
Tr𝜏

)
𝜏

𝜆
+
𝜂p

𝜆

𝜕ux

𝜕r
(êr ⊗ êx + êx ⊗ êr).

(B16)

We separate this equation by components, meaning if êi ⊗ êj does not appear in this equation 𝜏ij = 0.

0 = 𝜕ux

𝜕r
[2𝜏rxêx ⊗ êx] − exp

(
𝜖𝜆

𝜂p
Tr𝜏

)
𝜏

𝜆
+
𝜂p

𝜆

𝜕ux

𝜕r
(êr ⊗ êx + êx ⊗ êr). (B17)

The symmetry of 𝜏 also holds in cylindrical coordinates, meaning 𝜏rx = 𝜏xr . We reorder accordingly.

exp
(
𝜖𝜆

𝜂p
Tr𝜏

)
𝜏

𝜆
= 𝛾̇[2𝜏xrêx ⊗ êx] +

𝜂p

𝜆
𝛾̇(êr ⊗ êx + êx ⊗ êr). (B18)

We separate the components once more. Yielding two unique equations.

exp
(
𝜖𝜆

𝜂p
Tr𝜏

)
𝜏xx = 2𝜆𝛾̇𝜏xr, (B19)

exp
(
𝜖𝜆

𝜂p
Tr𝜏

)
𝜏xr = 𝜂p𝛾̇ . (B20)
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180 KELLNBERGER et al.

The trace con be found to be:

Tr𝜏 = 𝜏xx + 𝜏rr + 𝜏𝜑𝜑 = 𝜏xx. (B21)

As stated above this solution has the same form as for the two dimensional case. Therefore, the following holds for both
cases. We eliminate 𝜏xr yielding the following.

exp
(

2𝜖𝜆
𝜂p

Tr𝜏
)
𝜏xx = 2𝜆𝛾̇2

𝜂p. (B22)

This is solved by the Lambert W function as follows.

𝜏xx =
𝜂p

2𝜖𝜆
W0

(
4𝜖𝜆2

𝛾̇
2)
. (B23)

As already mentioned above most components of 𝜏 are zero, using specifically

0 =

{
𝜏yy = 𝜎yy, in 2D
𝜏rr = 𝜎rr, in 3D

, (B24)

yields the first normal stress difference N1 as follows.

N1 = 𝜎xx −

{
𝜎yy, in 2D
𝜎rr, in 3D

= 𝜏xx =
𝜂p

2𝜖𝜆
W0

(
4𝜖Wi2)

. (B25)

The second normal stress difference, which is defined as follows, is zero on account of the components in the equation
being zero.

N2 =

{
𝜎yy − 𝜎zz = 𝜏yy − 𝜏zz, in 2D
𝜎rr − 𝜎𝜑𝜑 = 𝜏rr − 𝜏𝜑𝜑, in 3D

= 0. (B26)

For the viscosity, we insert this into Equation (B10) and retrieve the following.

𝜂 = 𝜎xr

𝛾̇
, (B27)

= 𝜏xr + 𝜂s𝛾̇

𝛾̇
, (B28)

= 𝜂(𝛾̇) =
𝜂p

exp
[
0.5W0

(
4𝜖Wi2)] + 𝜂s. (B29)

With 𝜎xr = 𝜎xysgn(y) ≤ 0 in the 2D case analogous to 𝜏xr . This concludes the relevant solutions for shear flow. However,
these equations also hold for Poiseuille flow. Next we calculate the velocity profile for Poiseuille flow.

B.2 Velocity profile
We start with the Navier–Stokes equation (neglecting gravity), which reads as follows.

𝜌
Du⃗
Dt

= −∇p + ∇ ⋅ 𝜎. (B30)

In steady state for this geometry in two dimensions, this reduces to the following.

𝜕𝜎xr

𝜕r
=
𝜕p
𝜕x
. (B31)

 10970363, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fld.5335, W

iley O
nline L

ibrary on [03/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KELLNBERGER et al. 181

In three dimensions there is a slight difference. We start from the stress.

𝜎 = 𝜏 + 2𝜂sD = 𝜏 + 𝜂s(êx ⊗ êr + êr ⊗ êx). (B32)

Therefor as seen for 𝜏 above, 𝜎 also only has 𝜎xx, 𝜎xr, 𝜎rx components. Furthermore, from symmetry x and 𝜑 derivatives
of 𝜎 are zero. This reduces the divergence to the following.

∇ ⋅ 𝜎 = 𝜕𝜎xr

𝜕r
êx +

𝜎xr

r
êx. (B33)

Notably this leads to a different reduced Cauchy momentum equation than for the 2D case.

𝜕𝜎xr

𝜕r
+ 𝜎xr

r
=
𝜕p
𝜕x
. (B34)

However, due to the convenient form of the additional term both cases are solved by the following.

𝜎xr =
𝜕p
𝜕x

r
2j . (B35)

Here j is 0 for the two dimensional case and 1 in the three dimensional flow. From here the solution is independent of the
dimensionality again. The total stress experienced by the fluid is the one described by the constitutive equation plus the
solvent contribution, which can also be written as follows.

𝜏xr = 𝜕xp r
2j − 𝜂s𝛾̇ . (B36)

Dividing Equation (B9) by Equation (B10) leads to the following relation.

𝜏xx =
2𝜆
𝜂p
𝜏

2
xr =

2𝜆
𝜂p

(
𝜕xp r

2j − 𝜂s𝛾̇

)2

. (B37)

Inserting this back into Equation (B10) yields the following.

𝛾̇ = exp

(
2𝜖𝜆2

𝜂
2
p

[
𝜕xp r

2j − 𝜂s𝛾̇

]2
)

1
𝜂p

(
𝜕xp r

2j − 𝜂s𝛾̇

)
. (B38)

This cannot be integrated as easily as without 𝜂s, and is only solvable semi-analytically.

1 = exp

(
2𝜖𝜆2

𝜂
2
p

[
𝜕xp r

2j − 𝜂s𝛾̇

]2
)

1
𝜂p

(
𝜕xp r

2j
𝛾̇

− 𝜂s

)
, (B39)

0 = 2𝜖𝜆2

𝜂
2
p

[
𝜕xp r

2j − 𝜂s𝛾̇

]2

− ln 𝜂p + ln
(
𝜕xp r

2j
𝛾̇

− 𝜂s

)
, (B40)

0 = 2𝜖𝜆2
𝛾̇

2

[

𝜕xp r
2j
𝛾̇𝜂p

− 𝜂s

𝜂p

]2

+ ln

(

𝜕xp r
2j
𝛾̇𝜂p

− 𝜂s

𝜂p

)

. (B41)

This has the following form

0 = ab2 + ln b. (B42)

This can be solved using the Lambert W function as follows.

b =
√

W0(2a)
2a

. (B43)
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182 KELLNBERGER et al.

Resolving for r yields the following.

r = 2j
𝜂s

𝜕xp
𝛾̇ −

𝜂p2j−1

𝜆

√
𝜖𝜕xp

√
W0

(
4𝜖𝜆2𝛾̇2)

. (B44)

We notice, that this is the solution for a Poiseuille flow with viscosity 𝜂s expanded by a term that applies a nonuniform
scaling of the profile along the r-axis towards higher radii. We simplify again using c < 0 and d > 0.

r = c𝛾̇ − R𝜂
c
d

√
W0

(
d2𝛾̇2)

. (B45)

Finally this function needs to be inverted. This needs to be done numerically. We calculate a range of 𝛾̇ from 0 to R
c

with
a small step interval. Here R is the radius of the channel or pipe. This is guaranteed to contain all relevant radii. We flip
the axis and integrate numerically using scipy.integrate.cumulative_trapezoid .57 This is very accurate as
we conveniently picked the spacing of our now x-axis in a way, that the y-axis (𝛾̇) varies little for each step. From the
recovered curve u is calculated at each required r through linear interpolation.

APPENDIX C. VALIDATION IN PURE SHEAR FLOW

As additional quantitative validation, we simulate a pure shear flow driven by imposing a fixed velocity at the top and
bottom of the computational box and using periodic boundary conditions in the other two directions. The box dimension
is 2 × 43 × 2. We use PTT with the methyl cellulose parameters and vary the shear rate to cover the full range starting
from the zero-shear all the way to the infinite-shear plateau displayed in Figure 2 of the main text. The shuffling is fixed
at 𝛼s = 1 and the viscosity as function of shear rate is computed by dividing the total fluid stress at the center of the box
by the shear rate. Figure C1A shows that our simulations are in very good agreement with the semi-analytical solution
with a maximum error of 2 × 10−11. Importantly, we show in Figure C1B that this very good agreement is independent of
the shuffling parameter 𝛼s.

(A)

(B)

F I G U R E C1 (A) The local viscosity determined by a shear flow simulation is in very good agreement with the semi-analytical theory.
(B) The error is negligibly small and independent of the shuffling parameter 𝛼s.
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KELLNBERGER et al. 183

APPENDIX D. SUPPLEMENTARY FIGURES

(A)

(B)

F I G U R E D1 Time evolution of the center-line velocity of an alginate (A) and methyl cellulose (B) solution in planar Poiseuille flow as
seen in Figure 3. [Colour figure can be viewed at wileyonlinelibrary.com]

(A)

(B)

F I G U R E D2 L1 error of the velocity profile in Figure 3 with respect to the semi-analytical theory in a planar Poiseuille flow for
alginate (A) and methyl cellulose (B). The relative error is highest near the wall as the velocity is lowest there, but also because the simple
half way bounce back boundaries used here allow some slip along the wall. [Colour figure can be viewed at wileyonlinelibrary.com]
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184 KELLNBERGER et al.

(A)

(B)

F I G U R E D3 L2 error of the velocity for a planar (A) and a cylindrical (B) Poiseuille flow of methyl cellulose at different pressure
gradients. The peak in the error profile appears when the average shear rate across the channel corresponds to the maximum slope in the
viscosity profile of Figure C1. [Colour figure can be viewed at wileyonlinelibrary.com]

(A)

(B)

F I G U R E D4 Time evolution of the center-line velocity of an alginate (A) and methyl cellulose (B) cylindrical Poiseuille flow as seen in
Figure 4. [Colour figure can be viewed at wileyonlinelibrary.com]
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KELLNBERGER et al. 185

(A)

(B)

F I G U R E D5 L1 error of the velocity profile in 4 with respect to the semi-analytical theory in a cylindrical Poiseuille flow for alginate
(A) and methyl cellulose (B). The relative error is highest near the wall as the velocity is lowest there, but also because the simple half way
bounce back boundaries used here allow some slip along the wall.

F I G U R E D6 In planar Poiseuille flow, the result is near identical for different 𝛼s. The error reveals minor differences. Aside from the
wall nodes, the largest error appears for small shuffle fractions. For large ones, the error appears to become independent of 𝛼s. This indicates,
that the observed difference might be due to the Mach number changing for different 𝛼s and not due to the shuffling itself. This is due lower
𝛼s leading to lower LBM viscosities and such to higher Mach numbers.

(A)

(B)

F I G U R E D7 “Viscosity” in a Nozzle (A) and RT-DC channel (B) calculated by dividing 𝜏12 by the respective strain rate and adding the
solvent viscosity. This diverges along the center line, and thus it has been excluded. For the RT-DC channel this results in very large and
unphysical values, which had to be clamped. The flow and stresses in these geometries can be seen in Figures 6 and 7.
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186 KELLNBERGER et al.

APPENDIX E. LATTICE–BOLTZMANN IMPLEMENTATION

An excellent overview on LBMs can be found in the book by Krüger et al. on the subject.7 Our implementation mostly
follows the book, though some implementation details differ. We mention the most important basics of LBM here and rec-
ommend the book for further reading. Instead of solving the Navier–Stokes equation LBM solves the Boltzmann equation
for fluid particle distributions. The Boltzmann equation is discretized both in space x⃗ and time t. Also, the velocity is
limited to discrete values c⃗i, the so-called velocity sets. The velocity sets are usually denoted as DdQq, with d being the
number of dimensions and q being the number of discrete velocities. We use D3Q19. Its 19 velocities can be found in
Equation (E9). The density is split into the so-called populations fi(x⃗, t), which are parts of the density moving along a
certain discrete velocity at a certain discrete point in time at a certain discrete point in space. With these discretizations
the Boltzmann equation reads as follows.

fi
(

x⃗ + c⃗iΔt, t + Δt
)
= fi(x⃗, t) + Ωi(x⃗, t). (E1)

Here Δt is the duration of a time step (distance between the discrete points in time) and Ωi(x⃗, t) is the collision oper-
ator. The equation describes the populations moving along the discrete velocities to a neighboring point (streaming)
while exchanging momentum modeled by the collision operator (collision). The collision operator redistributes the pop-
ulations, that meet at any given lattice point. This is highly complex and is therefore usually approximated using the
Bhatnagar–Gross–Krook (BGK) operator, which reads as follows.

Ωi = −
fi − f eq

i

𝜏r
Δt. (E2)

Here 𝜏r is the relaxation time and f eq
i are the equilibrium populations defined as follows.

f eq
i = wi𝜌

[

1 + u⃗ ⋅ c⃗i

c2
s
+
(

u⃗ ⋅ c⃗i
)2

2c4
s

+ u⃗ ⋅ u⃗
2c2

s

]

. (E3)

Here u⃗ is the local fluid velocity, 𝜌 is the local density, wi are the lattice weights associated to the chosen velocity set (given
in Equation (E10) for D3Q19) and cs is the lattice speed of sound defined as follows.

c2
s =

1
3
Δx2

Δt2 . (E4)

Here Δx is the distance between two discrete lattice points. The LBM equation with BGK therefore takes the shape of a
relaxation towards equilibrium:

fi
(

x⃗ + c⃗iΔt, t + Δt
)
− fi(x⃗, t) = −

Δt
𝜏r

[
fi(x⃗, t) − f eq

i (x⃗, t)
]
. (E5)

It should be noted, that this is the simple case for a Newtonian fluid. If additional (external) forces are to be considered,
additional terms are added on the right-hand side to account for these. For the forces used to drive the simple periodic
flows and the forces from the IBM used to simulate cells, we use the algorithm presented by Guo et al.58 The following
equations relate the discrete quantities back to the physical quantities.

𝜌 =
∑

i
f eq
i =

∑

i
fi, (E6)

𝜌u⃗ =
∑

i
c⃗if eq

i =
∑

i
c⃗ifi, (E7)

𝜂

𝜌
= c2

s

(
𝜏r −

Δt
2

)
. (E8)
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Here 𝜂 is the viscosity. These equations are typically solved in lattice units (LU). These result from fixing three values in LU
and calculating conversion factors for all other units accordingly from these. The physical values are then divided by these
scaling factors. This is mathematically identical to scaling the whole equation and can be used to simplify the calculations
and to keep the values in a range optimal for computation. We pick 𝜌LU = 1 and 𝜂LU = 1

6
as is typically done. Naturally

ΔxLU = 1 and ΔtLU = 1. A convenient third scale is the resolution, meaning the relation of Δx to the size of the system,
which we pick depending on the geometry. The relaxation time can be freely chosen, but is ideal at unity in LU. The LBM
scheme with the BGK operator is called single relaxation time (SRT). There are generalizations for two relaxation times
(TRT) and for one relaxation time per i (multi relaxation time, MRT). We found the more complex schemes to rarely yield
worthwhile improvement and stick to SRT. While there are multiple valid options we use D3Q19 as the velocity set. The
19 velocities and their weights are noted in the following.

Δt
Δx

c⃗i =
⎧
⎪
⎨
⎪
⎩

0 1 −1 0 0 0 0 1 −1 1 −1 0 0 1 −1 1 −1 0 0
0 0 0 1 −1 0 0 1 −1 0 0 1 −1 −1 1 0 0 1 −1
0 0 0 0 0 1 −1 0 0 1 −1 1 −1 0 0 −1 1 −1 1

⎫
⎪
⎬
⎪
⎭

, (E9)

where each column is a vector.

wi =
⎧
⎪
⎨
⎪
⎩

1
3
, i = 0

1
18
, 1 ≤ i ≤ 6

1
36
, otherwise

. (E10)
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