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Origin of red blood cell slippers in confined geometries
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One of the most intriguing characteristics of red blood cells is their ability to form
asymmetric, rotating slipper states even in symmetric channel flows. Here we argue that the
common association of these slipper states with the well-understood tank-treading in shear
flow is incomplete. We use boundary-integral simulations for a systematic decomposition
of the channel flow field into linear shear and quadratic curvature components. Our findings
show that a fore-aft asymmetry induced by flow curvature is a plausible mechanism behind
the formation of slipper shapes.
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Red blood cells (RBCs) are the most abundant cell type in mammals and humans. During their
entire lifespan, they are exposed to flows inside blood vessels. In such flows, their extremely high
deformability causes an amazingly rich dynamical variety that has fascinated physicists, physicians,
and biologists for decades [1]. Besides their obvious physiological relevance, red blood cells
represent a prototypical model system for an entire class of soft objects such as artificial vesicles
or microcapsules, which have attracted substantial interest in the physics community over the last
years. One of the most intriguing phenomena is the occurrence of dynamically rotating, highly
asymmetric shapes in strongly confined microchannels. These so-called slippers have so far eluded
a clear physical explanation.

To study the dynamics of soft objects in flow, the vast majority of research has focused on
two simple yet prototypical flow fields: a linear shear flow and a quadratic Poiseuille flow. In
linear shear flow, the velocity is uniaxially directed along a single axis, say x, and its magnitude
depends linearly on a second axis orthogonal to x, say ux = −γ y, with the shear rate γ . In biaxial
Poiseuille flow such as the flow in cylindrical (blood) vessels, on the other hand, the flow features
a quadratic dependence on the distance r from the central axis of the channel. In the Cartesian
frame r =

√
y2 + z2 and therefore ux = U0[1 − α2(y2 + z2)] with the flow curvature α. In synthetic

microchannels with square or rectangular geometries, the flow profile is mathematically slightly
more complex but shares the key characteristic of a curved flow with a simultaneous dependence on
the y and z coordinates.

In linear shear flow, the two most important dynamics of RBCs—vesicles and capsules—are
tumbling (or flipping) at low shear rates [2–9] and tank-treading at high shear rates [3–6,8,10–19].
At intermediate shear rates, various transitional regimes have been observed [9,20–27], while at very
high shear rates RBCs exhibit so-called multilobe shapes [28,29] and finite-Reynolds effects [30].
In the tumbling regime, the RBC behaves essentially as a rigid body performing periodic flips with
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very little deformation. In the tank-treading regime, the RBC attains roughly the shape of an inclined
ellipsoid whose membrane permanently rotates around the liquid interior, thus creating an important
intracellular flow.

In Poiseuille flow, the two most important modes of motion are the croissant (or parachute)
shape [31–42] and the slipper shape [31–38,40–46], together with some intermediate shapes [47].
Experiments have found the slippers to occur mainly at high velocities, and croissants at low
and intermediate velocities [32,36,45,48,49]. Some studies [31,33] have in addition proposed the
velocity lag between cell and mean flow as a possible cause for slipper formation. In the croissant
mode, the RBC flows in the center of the channel with a stationary, symmetric state, while in the
slipper mode the cell slightly oscillates around a stable off-centered position [45]. In addition, the
membrane permanently rotates around the cell interior leading to an important intracellular flow.
This observation has led researchers to interpret the slipper motion in Poiseuille flow as, essentially,
a variant of the tank-treading regime in shear flow.

Here, we use a simplified RBC model to propose that—contrary to intuition—the slipper mode
in Poiseuille flow is not associated with the tank-treading mode in linear shear flow. For this, we
exploit the capability of boundary-integral simulations to impose arbitrary flow profiles without
the need of confining walls. We find that the key ingredient necessary for slipper formation is the
combination of symmetry-breaking due to a curved flow and a rotation due to a shear flow. Led by
this insight, we then propose an explanation for the occurrence of slipper shapes as a “frustrated
tumbling” mode different from the established “modified tank-treading” picture.

Methods. Fluid flow is modeled via the three-dimensional (3D) Stokes equation and solved with
a boundary integral method (BIM) [50]. The RBC is discretized into 2048 triangles. The tolerance
for the relative residue used by the GMRES solver is set to 10−5. In the presence of channel walls,
the computational domain is periodic. The channel is modeled via triangulated surfaces (2166

triangles) whose positions are maintained by a set of springs. Otherwise, an infinite domain is used.
For further implementation details, see [36]; the computational cost on 32 CPU cores is maximally
1 day per data point.

The RBC is treated as an elastic membrane filled with a viscous hemoglobin solution. The
ratio between interior and exterior (plasma) viscosity is defined as λ = μin

μ
. For shear resistance,

the Skalak law with a shear modulus κs = 5 × 10−6 Nm−1 [51] is used. The reference shape for
shear resistance is chosen as the discocyte shape for simplicity. In Fig. S3 of the Supplemental
Material [52], we verify for a selected set of data points that a different reference shape does not
affect our results. Additionally, the membrane is equipped with a bending rigidity described by the
Helfrich law [53–55] with a bending modulus κB = 3 × 10−19 Nm and a flat bending reference
shape. To reduce parameter space, membrane viscosity was neglected. Volume conservation is
ensured by rescaling the RBC and area conservation by setting the area dilatation modulus included
in Skalak’s law to κA = 100κs. Despite its simplifications, this model has previously shown good
agreement with experimental measurements [36].

To characterize the ratio between elastic and viscous effects, we introduce the Capillary number,
which in shear flow is defined as

Cashear = μγ R0

κs
(1)

with the effective cell radius R0 = 3

√
3Vcell
4π

and the shear rate γ .
In a Poiseuille flow, the shear rate γ is no longer uniform, thus requiring a redefinition of Ca.

The velocity in a planar Poiseuille flow has the form

ux = U0(1 − α2y2) (2)

with the curvature α, leading to an effective shear rate γeff = dux/dy ∝ U0α
2y. Considering an RBC

in the channel center, the shear rate at the outer edge is thus γeff ∼ U0α
2R0. In a channel of width
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FIG. 1. RBC in pure shear flow. (a) At low shear rates the RBC tumbles, while at high shear rates a
transition to tank-treading is observed for λ = 3. (b) Typical image sequence for tumbling (Cashear = 0.070,
λ = 3), and (c) tank-treading (Cashear = 0.46, λ = 3). The blue dot serves to illustrate membrane rotation
during tank-treading motion.

W , we have α = 1/(W/2), which finally leads to

Capois = μγeffR0

κs
= μU0α

2R2
0

κs
=

μU0
( R0

W/2

)2

κs
. (3)

A key ingredient of our work is to characterize cell behavior in a flow with fixed shear rate and
curvature. In the presence of a flow curvature, this is hindered by the associated migration of the
RBC [56] in the curvature plane, leading to changing shear rates. To suppress this migration, two
different methods are employed. For the orthogonal superposition of shear and Poiseuille flow, a
weak spring acting in the curvature plane is sufficient to push the cell back to the center. For the
in-plane and biaxial superposition of these flows, the migration tendency is stronger and therefore
the red blood cell is continuously shifted back to its original position.

Results. In recent studies [31–34,36–38,40,43–46], experiments and simulations showed a signif-
icant proportion of slipper states for RBCs flowing in small microchannels. Besides microchannels
with sharp corners, in some of these works [32,34,35,38,40,43,46] slippers were also found in
cylindrical tubes, which corresponds closely to the in vivo geometry.

Our strategy to understand these shapes proceeds by starting from very simple flow geometries,
followed by a stepwise increase in complexity until we reach our target geometry, the microchannel.
As the correct value of the viscosity ratio λ representing the in vivo situation of red blood cells in
blood plasma is not fully known [45,57,58] (and in fact most likely depends on cell age), we study
two values: λ = 3 and λ = 10.

Pure shear flow. To set the stage, we start by studying our RBC model in a pure shear flow of the
form

ux = −γ y (4)

whose strength is characterized fully by Cashear from Eq. (1). As shown in Fig. 1, we find the
commonly observed tumbling state at low and the tank-treading state at high Ca numbers. We
mention that in this work we denote as “tumbling” all states in which a constant cell shape rotates
around its center point, which also includes nonellipsoidal shapes such as trilobes. The transition
with a viscosity contrast of λ = 3 is located around Cashear ≈ 0.28, in agreement with previous
works, e.g., [17,22,29]. Again in agreement with previous observations, e.g., [59], the tank-treading
state is not observed for λ = 10 even at very high shear rates up to Cashear = 20, which already hints
at the different nature of tank-treading and slipper states since slippers are observed for λ = 10.

Orthogonal superposition of shear and Poiseuille flow. The pure shear flow of the previous
paragraph is a valid approximation to the local flow in channels that are large compared to the RBC
size, but it misses the important characteristic of flow curvature. The latter becomes particularly
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FIG. 2. RBC dynamics in orthogonal superposition of shear and Poiseuille flow (a) at Cashear = 0.035,
Capois = 0.12 for λ = 3, and (b) at Cashear = 0.14, Capois = 0.75 for λ = 10. After some intermediate states,
the RBC assumes a clear slipper state including membrane rotation, even though the considered shear rates
would lead to tumbling in the absence of flow curvature as shown in Fig. 1.

important in small channels, which are the focus of our study. We exploit here the special capability
of boundary-integral methods to impose truly infinite flows of arbitrary profiles without the necessity
of physical walls. In this way, we amend the shear flow by superposing an additional Poiseuille flow
profile. The curvature is chosen in the z-direction and thus stands orthogonal to the shear plane. The
flow profile reads

ux = −γ y + U0(1 − α2z2). (5)

This profile captures the key ingredients (shear and curvature) of the flow experienced by an
off-centered cell in a rectangular microchannel, which is precisely the setup where slipper states
are typically observed [36,45]. Hydrodynamic interactions with confining walls such as lift
forces [56,60–62] are purposefully excluded here in order to bring out clearly the influence of
the local flow profile as such. The key advantage of this flow profile is that it allows us to tune
the shear strength in y and the flow curvature in z independently from each other. Accordingly, we
characterize the flow profile by the two capillary numbers Cashear and Capois defined above.

Figure 2 shows two examples for cell dynamics at different Cashear and different λ. In both
situations, the cell attains a stable slipper state including the typical membrane rotation. This is
rather surprising as the employed shear rates would, in the absence of flow curvature as in Fig. 1,
fall deep into the tumbling regime. We further note that the investigated flow is unconfined and
thus there are no walls that could prevent the tumbling motion. This leaves as the only explanation
for slipper formation the additional flow curvature of the Poiseuille profile along the vorticity (z)
direction of the shear flow.

To investigate this phenomenon more systematically, we create a phase diagram mapping the
interplay between the shear component characterized by Cashear and the Poiseuille component
characterized by Capois in Fig. 3. Herein, the line Capois = 0 corresponds to pure shear flow. For
λ = 3 in Fig. 3(a) we find tumbling at low and tank-treading at high Cashear in agreement with
Fig. 1. Upon addition of the second flow component by increasing Capois, we observe that the
tank-treading regime slightly grows towards lower Cashear. At around Capois = 0.05, slippers start to
appear. Interestingly, these slippers do not appear first at high Cashear as one would expect if slippers
indeed corresponded to a variant of the tank-treading motion in pure shear flow. Instead, slippers
first start to appear at low Cashear, but then very quickly and consistently occupy the entire Cashear
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FIG. 3. Phase diagram for orthogonal superposition of shear and Poiseuille flow for (a) λ = 3 and (b)
λ = 10. The occurrence of slippers upon increasing Capois, even in regions where the shear component alone
would lead to tumbling [Cashear < 0.25 in (a) and the entire Cashear range in (b)], demonstrates that the flow
curvature is the key ingredient that causes the slipper state.

range. This supports our hypothesis that slippers in Poiseuille and tank-treading in shear flow are
two distinct and unrelated modes of motion. Evidence for this hypothesis is even stronger when
considering Fig. 3(b) for λ = 10. Here, upon increasing Capois slippers appear consistently over the
entire range of Cashear, even though there are no tank-treading states at all in pure shear flow.

In-plane superposition of shear and Poiseuille flow. Next, we ask whether the appearance of
slippers is connected to the fact that the curvature and shear directions are orthogonal or whether a
superposition of linear shear and Poiseuille flow in the same direction would be sufficient as well.
The considered flow profile is thus

ux = −γ y + U0(1 − α2y2). (6)

At y = 0, the derivative of the second term vanishes such that we obtain indeed a superposition of a
pure shear and a pure Poiseuille, with no additional net shear.

The resulting phase diagram can again be drawn in the Cashear-Capois-plane and is shown in
Fig. 4(a) for λ = 10 and in the Supplemental Material [52] in Fig. S-1(a) for λ = 3. Comparing
Fig. 3(b) for orthogonal superposition with Fig. 4(a) for in-plane superposition shows qualitatively
the same trends. The addition of a small Poiseuille flow component leads to the appearance of slipper
states at low Cashear. Increasing the Poiseuille flow strength makes the slipper region grow towards
higher Cashear. Overall, the slipper region in the orthogonal superposition is, however, larger than
for in-plane superposition, indicating that orthogonal curvature is more efficient in creating slippers
than in-plane curvature. The physical reason for this observation will be discussed below. Again,
the appearance of slippers at low Cashear and at λ = 10 contradicts the interpretation of slippers as a
modified tank-treading mode.

FIG. 4. (a) Phase diagrams for (a) in-plane superposition of shear and Poiseuille flow, and (b) biaxial
superposition of shear and Poiseuille flow for λ = 10. In (b), Capois,y = 1.25 was fixed. In qualitative agreement
with Fig. 3, the additional flow curvature triggers the appearance of the slipper state.
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FIG. 5. Comparison of RBC shapes in our microchannel simulations (green) with shapes obtained by an
orthogonal superposition of shear and Poiseuille flow (red) and with shapes obtained by a biaxial superposition
of shear and Poiseuille flow (blue). The good agreement shows that our superposition approach is a sufficient
representation of microchannel flow and that lift forces from confining walls are not essential for slipper
formation. Parts (a) and (b) are in the square, and (c) and (d) in the rectangular microchannel. A similar picture
for λ = 3 is provided as Fig. S-2 of the Supplemental Material [52].

Biaxial superposition of shear and Poiseuille flow. In a real microchannel, the flow is curved in the
y- and z-directions. Since we observed in Figs. 3 and 4(a) that both curvatures independently lead to
the creation of slipper states, it is natural to ask whether the effect would be amplified, i.e., whether
the slipper region in the phase diagram would grow, if both curvatures were added simultaneously
to the shear flow. We therefore study a system with the flow profile

ux = γ y + U0,y
(
1 − α2

y y2
) + U0,z

(
1 − α2

z z2
)
. (7)

This results in the appearance of three dimensionless numbers: Cashear, Capois,y, and Capois,z.
The resulting phase plot for fixed Capois,y = 1.25 is shown in Fig. 4(b) for λ = 10 and in the
Supplemental Material [52] in Fig. S-1(b) for λ = 3. Indeed, the slipper region is even larger than
in the two cases before, where only a single curvature was added to the base shear flow. So far, all
studied systems excluded the influence of confining walls. This influence will be considered next.

Microchannel flow. We finally study our target geometry, i.e., realistic microchannels, which
includes hydrodynamic interaction with the walls. We consider a square channel with a side length
W = H = 9.6 µm as well as a rectangular channel with W = 11.5 µm in the y-direction and H =
8 µm in the z-direction. Such a channel was used in the recent experimental work of Recktenwald
et al. [45] and, with slightly different dimensions, also in [36]. In contrast to the previous paragraph,
shear and Poiseuille components can now no longer be tuned independently and only the maximum
flow speed U0 remains as a free parameter. Nevertheless, Capois from Eq. (3) is well-defined. Cashear

is also well-defined using the shear-rate obtained in the unperturbed flow profile at the coordinate
of the cell. This allows a direct comparison of the RBC shapes in realistic microchannels with the
shapes observed in the artificial flow fields studied above.

As has been shown previously in experiments and simulations [36,45], both slippers and crois-
sants are frequently observed in this setup. Furthermore, numerical evidence shows that slipper
states in nonsquare microchannels take off-centered positions in the long channel direction, here the
y-direction, while remaining centered in the short direction, here the z-direction [63]. A selection
of slipper shapes is shown in Fig. 5. Using the dimensionless numbers Cashear and Capois, we can
directly match slipper states in the microchannel with corresponding slipper states as they occur
under the flow profiles from the previous paragraphs. Indeed, Fig. 5 shows that the shapes are
similar. The slight differences stem from the absence of lift forces from the walls in the infinite flow
profiles. To further underline the direct correspondence between the superposed flow fields studied
above and the realistic microchannel flow, we compare the rotation periods, i.e., the time that it
takes for the membrane to carry out one full rotation, measured in units of the inverse shear rate
γ −1. Referring to Fig. 5, the values are Tbiaxial/Torthogonal/Tchannel = 49/45/65 for (a), 48/44/65 for
(b), 48/44/47 for (c), and 52/47/57 for (d). Together, these similarities demonstrate the validity
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FIG. 6. (a) The phase diagram from Fig. 3(b) with a rescaled vertical axis shows that there is a universal
transition point (Capois/Cashear )crit ≈ 1 for this system. (b) For the system in Fig. 4(a), a similar transition point
is found; its value is at around 2.5.

of superposing a shear and Poiseuille profile(s) to mimic a true microchannel flow. They further
highlight our key finding that flow curvature is sufficient to explain the occurrence of slipper states
and that hydrodynamic interaction with channel walls is not essential.

Discussion and Conclusion. The transition from tumbling to tank-treading for vesicles, capsules,
and red blood cells in shear flow is well understood [20,21,64]. For the transition from crois-
sant/parachute to slipper in Poiseuille flow, the general explanation assumes first an instability of
the croissant, leading to outward motion, which is then counterbalanced by the lift force from the
confining wall [31,33,65]. Together, these two effects stabilize an off-center flow position where the
local shear causes rotation of the membrane analogous to the tank-treading mode in shear flow. This
line of argument, however, cannot be complete, as slippers in microchannels appear at (local) shear
rates that are far below the tumbling-to-tank-treading threshold in shear flow. Even more, slipper
states have been found at high viscosity contrasts where in shear flow no tank-treading motion at all
is observed [36,45,59].

From our data in Figs. 3(b) and 4(a), we conclude that there exists, for each shear rate Cashear,
a critical amount of additional flow curvature, embodied in Capois, required to trigger the transition
to the slipper state. It remains to be seen, however, whether there exists a universal transition point
for each of the two considered systems. Indeed, if we rescale the vertical axis to Capois/Cashear,
the phase boundary becomes a nearly horizontal line independent of the shear rate, i.e., we find a
critical transition ratio (Capois/Cashear )crit . In Fig. 6 we show that this value is approximately 1 for
orthogonal and approximately 2.5 for in-plane superposition of shear and Poiseuille flows.

Based on our systematic decomposition of flow fields into shear and curvature contributions,
we are now in a position to propose a novel explanation for slipper formation. Its key ingredient
is the effect of the flow curvature on the RBC shape. Hydrodynamic interactions between RBC
and surrounding walls are not necessary for slipper formation. Consider first a tumbling RBC in
shear flow. For a stable, periodic tumbling motion of an ellipsoid shape, it appears essential that the
tumbling RBC possesses a plane of symmetry such that a 180◦ flip around an axis perpendicular to
the shear plane leads to an identical state as shown in Fig. 7(a). Now consider an additional curved

FIG. 7. (a) In pure tumbling motion, the RBC shape exhibits a plane of symmetry such that the initial shape
is restored after half a tumbling period. (b) A curved flow (shown here in the z-direction) breaks the symmetry
of the shape, thus preventing the tumbling motion.
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flow in the z- or y-direction, which, in turn, causes curving of the particle in the same direction with
the particle tip pointing in the direction of the flow, the x-direction. This curving breaks the original
symmetry such that a 180◦ flip no longer leads to a symmetric situation as illustrated in Fig. 7(b).
Instead, a (hypothetical) 180◦ flip would lead to a highly unstable situation with the tip pointing
backwards. As a result, this symmetry breaking effectively prevents the regular tumbling motion
and forces the cell to adapt to the conflicting influences of Poiseuille and shear flow by creating a
new flow state, which is precisely the slipper. We therefore propose that the prevailing paradigm of
the slipper shape should be modified, and that slippers should be viewed as a “frustrated tumbling”
rather than a “modified tank-treading.”
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